树与二叉树
1.树
2.二叉树
二叉树的性质:
-
在非空二叉树中,第i层的结点总数不超过2i-1, i>=1;
-
深度为h的二叉树最多有2h-1个结点(h>=1),最少有h个结点;
-
对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
-
具有n个结点的完全二叉树的深度为log2(n+1);
5)有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:
若I为结点编号则 如果I>1,则其父结点的编号为I/2;
如果2I<=N,则其左儿子(即左子树的根结点)的编号为2I;若2I>N,则无左儿子;
如果2I+1<=N,则其右儿子的结点编号为2I+1;若2I+1>N,则无右儿子。
6)给定N个节点,能构成h(N)种不同的二叉树,其中h(N)为卡特兰数的第N项,h(n)=C(2*n, n)/(n+1)。
7)设有i个枝点,I为所有枝点的道路长度总和,J为叶的道路长度总和J=I+2i。
3.树的实现
template
class BiTree
{
public:
Bitree(){root=Creat(root);}
~Bitree(){Release(root);}
void PreOrder(){PreOrder(root);}
void InOrder(){InOrder(root);}
void PostOrder(){PostOrder(root);}
void LeverOrder();
private:
BiNode*root;
BiNode*Creat(BiNode*bt);
void Release(BiNode*bt);
void PreOrder(BiNode*bt);
void InOrder(BiNode*bt);
void PostOrder(BiNode*bt);
};
4.二叉树中的遍历
5.二叉查找树
二叉查找树定义:又称为是二叉排序树(Binary Sort Tree)或二叉搜索树。二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:
-
若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
-
若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
-
左、右子树也分别为二叉排序树;
-
没有键值相等的节点。
二叉查找树的性质:对二叉查找树进行中序遍历,即可得到有序的数列。
6.二叉树逻辑顺序