五大常用算法之动态规划算法

看了五大常用算法之一这篇博文,感觉理解了很多,可是纯粹都是理论,缺少一些示例,所以准备综合一篇博文,以帮助自己记忆,原文:

http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741374.html

一、基本概念

    动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

二、基本思想与策略

    基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

    由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

    与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)

 


三、适用的情况

能采用动态规划求解的问题的一般要具有3个性质:

    (1) 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。

    (2) 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。

   (3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势

 


四、求解的基本步骤

     动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。

    初始状态→│决策1│→│决策2│→…→│决策n│→结束状态

                      图1 动态规划决策过程示意图

    (1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。

    (2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。

    (3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两个阶段的状态之间的关系来确定决策方法和状态转移方程

    (4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。

    一般,只要解决问题的阶段状态状态转移决策确定了,就可以写出状态转移方程(包括边界条件)。

实际应用中可以按以下几个简化的步骤进行设计:

    (1)分析最优解的性质,并刻画其结构特征。

    (2)递归的定义最优解。

    (3)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优值

    (4)根据计算最优值时得到的信息,构造问题的最优解

 


五、算法实现的说明

    动态规划的主要难点在于理论上的设计,也就是上面4个步骤的确定,一旦设计完成,实现部分就会非常简单。

     使用动态规划求解问题,最重要的就是确定动态规划三要素

    (1)问题的阶段 (2)每个阶段的状态

    (3)从前一个阶段转化到后一个阶段之间的递推关系

     递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势,这也是动态规划算法的核心之处

    确定了动态规划的这三要素,整个求解过程就可以用一个最优决策表来描述最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值(如最短路径,最长公共子序列,最大价值等),填表的过程就是根据递推关系,从1行1列开始,以行或者列优先的顺序,依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。

          f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}


六、示例

(1)0-1背包问题

有N件物品和一个容量为V的背包。第i件物品的体积是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
状态转移方程:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的 伪码:
 for i=1..N 
    for v=V..0 
     f[v]=max{f[v],f[v-c[i]]+w[i]};
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];
如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。


例题:采药

Time Limit:   1000MS       Memory Limit:   65535KB 
Submissions:   155       Accepted:   50


Description辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。 医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间, 在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?  
Input输入的第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来 的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。 
Output输出包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。 
Sample Input
70 3
71 100
69 1
1 2
Sample Output
3

#include<iostream>
# include<cstring>
# define max(a,b) a>b?a:b
using namespace std;
int main()
{

    int dp[101][1001],m,T,w[101],val[101],i,j;
    cin>>T>>m;
    for(i=1;i<=m;i++)
        cin>>w[i]>>val[i];
    memset(dp,0,sizeof(dp));
    for(i=1;i<=m;i++)
     for(j=0;j<=T;j++)//j相当于上面说的V-c[i]
         {
    if(j>=w[i])
        dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+val[i]);//放还是不放的选择
    else dp[i][j]=dp[i-1][j];
     }
     cout<<dp[m][T]<<endl;
     return 0;
}
( 2) 求子数组的最大和

问题描述:输入一个整数数组,数组中有正数也有负数,一个或连续的多个整数组成一个子数组,求所有子数组的和的最大值。

求子数组的和的最大值,首先可以求出数组所有子数组的和,再逐一比较可以得到和的最大值。这是最直观易懂的一种解法。但是对一个长度为n的数组,总共有n(n+1)/2个子数组,计算所有子数组的和时间复杂度为O(n^2)。而当n较大时,这种算法是很难被用户接受的。

对于数组(a1, a2, a3, ......, an),设curSum为当前子数组(ai, ai+1, ......, aj)的和,其中1≤i<j<n,令k = j + 1且k ≤ n, sum = 0x80000000表示初始时子数组和的最大值。

1、如果curSum + ak > sum,那么sum = curSum + ak

2、如果curSum + ak ≤ 0,说明curSum已经是子数组(ai, ai+1, ......, aj, ak)的和的最大值, 那么curSum = ak,sum保持不变,对应的子数组为(ai, ai+1, ......, aj)

以数组{-1, -2, 3, 10, -4, 7, -2, -5}为例,初始时sum = 0x80000000, i = 0, curSum = 0

1)i = 0        curSum = -1        sum = -1 

2)i = 1        curSum = -2        sum = -1

3)i = 3        curSum = 3         sum = 3

4)i = 4        curSum = 13       sum = 13

5)i = 5        curSum = 9         sum = 13 

6)i = 6        curSum= 16        sum = 16

7)i = 7        curSum = 11        sum = 16 

有了上述思路,不难写出时间复杂度为O(n)的算法。

  1. bool MaxSumOfSubArrays(int data[], int length, int &sum)  
  2. {  
  3.     if(data == NULL || length <= 0) // 数据输入合法性检验  
  4.         return false;  
  5.   
  6.     sum = 0x80000000;   // 初始sum为最小32位有符号数  
  7.     int curSum = 0;  
  8.     for(int i = 0; i < length; ++i)  
  9.     {  
  10.         if(curSum <= 0)  
  11.             curSum = data[i];  
  12.         else  
  13.             curSum += data[i];  
  14.           
  15.         if(curSum > sum)  
  16.             sum = curSum;  
  17.     }  
  18.     return true;  
  19. }  

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值