- 博客(0)
- 资源 (12)
- 收藏
- 关注
简单AMP:在两个Cortex-A9处理器上运行裸机系统
在zynq上双系统搭建的教程,cpu0和cpu1都是跑裸机程序。
循序渐进,先跑裸机程序,再进行cpu0跑linux,cpu1跑裸机程序
2018-01-15
自适应特征点检测的可见一红外图像配准
可见一红外图像之间配准点的数量不足、分布严重不均匀以及配准点之间的错配率高这3个
核心问题,提出一种基于自适应特征点检测的可见一红外图像配准方法。方法本文提出的自适应特征点检测方
法,以Harris comer作为基本特征点;以特征点数目与空间分布为检测目标,从而自动地估计合适不同空间位置的
特征点的检测阈值。在特征点对匹配中,将梯度方向与互信息相融合有效地添加了相似性函数的空间位置信息。
结果 自适应Harris comer检测方法能够有效地提供空间分布均匀、数量充足的特征点。而梯度方向与互信息相
融合的相似性匹配函数提高特征点的匹配率20%,降低配准误差50%。结论 本文提出的多传感器图像配准方
法能够快速、准确地实现可见光图像与红外图像之间的配准,在CCD—IR图像融合领域具有很好的实用价值。
2017-10-10
Deep Learning
'Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.' -- Elon Musk, co-chair of OpenAI; co-founder and CEO of Tesla and SpaceX, Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning., The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models., Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
2017-10-10
纸币残损状态识别技术研究
提出的基于超声波和图像传感信息的识别算法能够有效、准确地实现纸币残损状态鉴别。论文阐述了不同种类残损纸币子系统设计方法,并分别采用不同的控制处理器实现硬件设计和算法。
2012-07-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人