第三章 纳什均衡——博弈论的基础
冯·诺伊曼没有解决的问题
博弈论在其建立初始也显现出了严重的局限性。冯·诺伊曼解决了二人零和博弈,但对多人博弈问题仍无法解决。如果只是鲁宾逊·克鲁索和星期五玩游戏,博弈论可以很好地被应用,但它无法精确解决盖里甘岛问题。
冯·诺伊曼用于解决多人博弈的方法是假定这些人之间会形成联盟。如果盖里甘、船长和玛丽安娜组队来对抗教授、豪厄尔斯和金哲,那么就可以应用二人零和博弈的简单规则。博弈可能涉及很多人,但如果他们分成两队,在数学分析中就可以用队伍来替代多个个体了。
但是,正如后来的评论家所提到的,冯·诺伊曼的方法存在着矛盾,使博弈论的内在完整性遭到了破坏。二人零和博弈的核心是选择一个你所能做的最优策略来对抗一个理性的对手。你的最佳选择是不管对手做什么,都采取你自己的最优(很有可能是混合的)策略。但如果在多人博弈中形成了联盟,如冯·诺伊曼相信的那样,你的策略就必须依赖于与他人的协调。无论如何,当博弈论应用于非零和情况下的多人博弈时——也就是应用于现实生活时——还需要补充一些最初的博弈论所不能提供的理论。这正是约翰·纳什所为我们带来的。
纳什的“讨价还价”
“讨价还价”体现了博弈论的另外一种表述形式,博弈者们有着共同的利害关系。在二人零和博弈中,赢家获得的就是输家输掉的,而与之不同的是,讨价还价博弈提供了一种双赢的可能。在这种“合作性”博弈理论中,对所有人来说目标都是自己做得最好,但不必以牺牲他人利益为代价。好的议价结果是双赢。一种典型的现实生活的讨价还价场景就是公司和工会间的谈判。
在纳什的“讨价还价”博弈论文中,他讨论了存在多种途径达到互惠结果的情形。问题是找到一种使双方的利益(或效用)最大化的方式——其前提是双方都是理性的(知道如何量化他们的期望),是具有同等技能的协商者,并且都了解彼此的期望。
当对资源交换进行讨价还价时(在纳什的例子里,如书本、球、笔、小刀、球拍和帽子一类的东西),博弈双方可能会对物品有不同的估价(运动员可能会认为球拍比书更有价值,但是偏于智力导向的议价者可能会认为书比球拍更有价值)。纳什展示了如何评价这些不同的估价,计算每个人在各种交换中的效用,并提供了精确的数学图解,找寻最佳成交点——促成最佳交易发生的点(即最大化各自效用的增长)。