codeforces 615-B. Longtail Hedgehog(dp)

本文解析了Codeforces上编号为615/B的问题,该问题是关于在一个无向无环图中寻找最长递增链与尾节点个数乘积的最大值。通过动态规划方法,对每个节点计算其作为递增链尾部的最长链长,并与该节点的邻居数量相乘,最终找出最大值。

http://codeforces.com/problemset/problem/615/B

题目大意:

给出一个n个点m条边的无向无环图(不一定全联通),求一条递增链长度与尾节点个数乘积的最大值。

解题思路:

设dp[i]表示以节点i结尾的最长的递增链长度,那么只要比较每个点的dp[i]值与对应点的节点个数乘积即可。

#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int maxn=2e5+10;
struct node{
    int x,y;
}s[maxn];
int n,m;
ll num[maxn],dp[maxn];

bool cmp(node a,node b)
{
    if(a.x==b.x)
      return a.y<b.y;
    return a.x<b.x;
}

int main()
{
    while(cin>>n>>m)
    {
        memset(dp,0,sizeof(dp));
        memset(num,0,sizeof(num));
        for(int i=0;i<m;i++)
        {
            cin>>s[i].x>>s[i].y;
            if(s[i].x>s[i].y)
              swap(s[i].x,s[i].y);
            num[s[i].x]++,num[s[i].y]++;
        }
        sort(s,s+m,cmp);
        for(int i=0;i<m;i++)
          dp[s[i].y]=max(dp[s[i].y],dp[s[i].x]+1);
        ll ans=0;
        for(int i=1;i<=n;i++)
          ans=max(ans,(dp[i]+1)*num[i]);
        cout<<ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值