题目如下:
Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
一开始,最自然地想法是从左到右把数组遍历一下,暴力地使用了2层循环,时间复杂度为O(N²)提交了发现超时了。。。。
class Solution {
public:
int maxArea(vector<int> &height) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int area_max=0;
int area_tmp=0;
int height_min=0;
int i=0;
int j=(int)height.size()-1;
while(i<j) {
height_min=height[i]<height[j]?height[i]:height[j];
area_tmp = (j-i)*(height[i]<height[j]?height[i]:height[j]);
if(area_tmp>area_max)
area_max=area_tmp;
if(height[j]>height[i]) {
while(height[i]<=height_min) {
i++;
}
} else {
while(height[j]<=height_min) {
j--;
}
}
// std::cout<<"area_tmp="<<area_tmp<<", i="<<i<<" ,j="<<j<<", area_max="<<area_max<<std::endl;
}
return area_max;
}
};
然后猜测,难道本题需要用动态规划,但是发现根本没法写状态转移方程。实在找不到办法了,却发现网上的解答中有非常简洁的O(N)时间复杂度的解答,应该说,算是一种贪心策略。
两个下标变量,分别表示数组的头部和尾部,逐步向中心推移。这个推移的过程是这样的:
假设现在是初始状态,下标变量i=0表示头部,下标变量j=height.size(),表示尾部,那么显然此时的容器的装水量取决一个矩形的大小,这个矩形的长度为j-i,高度为height[i]与height[j]的最小值(假设height[i]小于height[j])。接下来考虑是把头部下标i向右移动还是把尾部下标j向左移动呢?如果移动尾部变量j,那么就算height[j]变高了,装水量依然没有变得更大,因为短板在头部变量i。所以应该移动头部变量i。也就是说,每次移动头部变量i和尾部变量j中的一个,哪个变量的高度小,就把这个变量向中心移动。计算此时的装水量并且和最大装水量的当前值做比较。
解答如下,在LeetCode的OJ上用100ms通过。
class Solution {
public:
int maxArea(vector<int> &height) {
int area_max=0;
int area_tmp=0;
int i=0;
int j=(int)height.size()-1;
while(i<j) {
area_tmp = (j-i)*(height[i]<height[j]?height[i]:height[j]);
if(area_tmp>area_max)
area_max=area_tmp;
if(height[j]>height[i])
i++;
else
j--;
}
return area_max;
}
};
然后再考虑一下有没有优化的空间呢?
唯一能够想到是这里
if(height[j]>height[i])
i++;
else
j--;
这里每次把变量i或者j移动1步。如果新的高度比老的高度还小,那显然还要继续移动,所以这里可以修改为每次移动多步。
if(height[j]>height[i]) {
while((height[i]<=height_min)&&(i<j)){
i++;
}
} else {
while((height[j]<=height_min)&&(i<j)) {
j--;
}
}
小结
(1) 从两边向中间移动是个不错的办法。仔细想想也符合这道题算最大面积的风格。
(2)每次更新下标的时候,到底更新i还是更新j呢?这道题挺有意思的地方在于,更新的标准不是通常所理解的i或者j哪个一定更好就更新哪个,而是哪个可能更好就更新哪个,或者说,如果更新i一定会更差,那么就更新j看看不会不变好。