问题描述:
X 1 , X 2 , . . . , X n ∼ i . i . d P o i s ( λ ) , λ > 0 X_1, X_2, ..., X_n \overset{i.i.d}{\sim} Pois(\lambda), \lambda > 0 X1,X2,...,Xn∼i.i.dPois(λ),λ>0 for some unknown λ \lambda λ
H 0 : λ ≥ λ 0 , H 1 : λ < λ 0 , λ 0 > 0 H_0: \lambda \ge \lambda_0, H_1: \lambda \lt \lambda_0, \lambda_0 > 0 H0:λ≥λ0,H1:λ<λ0,λ0>0
theorem: the maximum of the type 1 error is achieved at the boundary of Θ 0 a n d Θ 1 \Theta_0\ and\ \Theta_1 Θ0 and Θ1 for a one-sided tests, where the parameter space is 1-dimensional.
the wrong proof:
α λ = P λ ∈ Θ 0 ( ψ = 1 ) w h e r e , ψ = I ( T n < − q α ) , w i t h l e v e l α \alpha_\lambda = P_{\lambda \in \Theta_0}(\psi = 1) \\ where, \psi = \mathbb{I}(T_n < -q_\alpha), with\ level\ \alpha αλ=Pλ∈Θ0(ψ=1)where,ψ=I(Tn<−qα),with level α
on this question, let T n = n X n ˉ − λ λ T_n=\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} Tn=nλXnˉ−λ
then, α λ = P λ ∈ Θ 0 ( T n < − q α ) = P λ ≥ λ 0 ( n X n ˉ − λ λ < q − α ) = P λ ≥ λ 0 ( n X n ˉ − λ λ < − q α ) \alpha_{\lambda} = P_{\lambda \in \Theta_0}(T_n < -q_{\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} < q_{-\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} < -q_{\alpha}) αλ=Pλ∈Θ0(Tn<−qα)=Pλ≥λ0(nλXnˉ−λ<q−α)=Pλ≥λ0(nλXnˉ−λ<−qα)
let T n , λ = n X n ˉ − λ λ T_{n, \lambda}= \sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} Tn,λ=nλXnˉ−λ and T n , λ 0 = n X n ˉ − λ 0 λ 0 T_{n, \lambda_0}= \sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} Tn,λ0=nλ0Xnˉ−λ0
when λ ≥ λ 0 \lambda \ge \lambda_0 λ≥λ0, we have:
λ ≥ λ 0 ⇒ − λ ≤ − λ 0 ⇒ X n ˉ − λ ≤ X n ˉ − λ 0 ⇒ X n ˉ − λ λ 0 ≤ X n ˉ − λ 0 λ 0 ⇒ X n ˉ − λ λ 0 ≤ X n ˉ − λ λ ≤ X n ˉ − λ 0 λ 0 ⇒ T n , λ ≤ T n , λ 0 \lambda \ge \lambda_0 \\ \Rightarrow\ -\lambda \le -\lambda_0 \\ \Rightarrow\ \bar{X_n} - \lambda \le \bar{X_n} - \lambda_0 \\ \Rightarrow \frac{\bar{X_n}-\lambda}{\lambda_0} \le \frac{\bar{X_n}-\lambda_0}{\lambda_0} \\ \Rightarrow \frac{\bar{X_n}-\lambda}{\lambda_0} \le\frac{\bar{X_n}-\lambda}{\lambda} \le \frac{\bar{X_n}-\lambda_0}{\lambda_0} \\ \Rightarrow T_{n, \lambda} \le T_{n, \lambda_0} λ≥λ0⇒ −λ≤−λ0⇒ Xnˉ−λ≤Xnˉ−λ0⇒λ0Xnˉ−λ≤λ0Xnˉ−λ0⇒λ0Xnˉ−λ≤λXnˉ−λ≤λ0Xnˉ−λ0⇒Tn,λ≤Tn,λ0
let event
A
:
T
n
,
λ
<
−
q
a
A : T_{n,\lambda} \lt -q_a
A:Tn,λ<−qa and
B
:
T
n
,
λ
0
<
−
q
a
B : T_{n,\lambda_0} \lt -q_a
B:Tn,λ0<−qa,
B
⊆
A
⇔
P
(
B
)
≤
P
(
A
)
⇔
P
(
T
n
,
λ
0
<
−
q
a
)
≤
P
(
T
n
,
λ
<
−
q
a
)
B \subseteq A \Leftrightarrow P(B) \le P(A) \Leftrightarrow P(T_{n,\lambda_0} \lt -q_a) \le P(T_{n,\lambda} \lt -q_a)
B⊆A⇔P(B)≤P(A)⇔P(Tn,λ0<−qa)≤P(Tn,λ<−qa)
which means: the minimum of the type 1 error is achieved at the boundary of Θ 0 \Theta_0 Θ0
what’s the problem in this proof? --hint, the wrong T n T_n Tn and the confusion of variable and constant.
the correct proof:
α λ = P λ ∈ Θ 0 ( ψ = 1 ) w h e r e , ψ = I ( T n < − q α ) , w i t h l e v e l α \alpha_\lambda = P_{\lambda \in \Theta_0}(\psi = 1) \\ where, \psi = \mathbb{I}(T_n < -q_\alpha), with\ level\ \alpha αλ=Pλ∈Θ0(ψ=1)where,ψ=I(Tn<−qα),with level α
on this question, let T n = n X n ˉ − λ 0 λ 0 T_n=\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} Tn=nλ0Xnˉ−λ0
then, α λ = P λ ∈ Θ 0 ( T n < − q α ) = P λ ≥ λ 0 ( n X n ˉ − λ 0 λ 0 < q − α ) = P λ ≥ λ 0 ( n X n ˉ − λ λ < − q α ) \alpha_{\lambda} = P_{\lambda \in \Theta_0}(T_n < -q_{\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} < q_{-\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} < -q_{\alpha}) αλ=Pλ∈Θ0(Tn<−qα)=Pλ≥λ0(nλ0Xnˉ−λ0<q−α)=Pλ≥λ0(nλXnˉ−λ<−qα)
let T n , λ 0 = n X n ˉ − λ 0 λ 0 T_{n, \lambda_0}= \sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} Tn,λ0=nλ0Xnˉ−λ0
when λ = λ 0 \lambda = \lambda_0 λ=λ0 we have:
X n ˉ ⟶ P λ 0 \bar{X_n}\overset{\mathbb{P}}{\longrightarrow} \lambda_0 Xnˉ⟶Pλ0, then
T n , λ 0 ⟶ d N ( 0 , 1 ) T_{n, \lambda_0} \overset{d}{\longrightarrow} N(0,1) Tn,λ0⟶dN(0,1), because of CLT
α λ = P λ = λ 0 ( n X n ˉ − λ 0 λ 0 < − q α ) = Φ ( − q α ) = 1 − Φ ( q α ) \alpha_{\lambda} = P_{\lambda = \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} < -q_{\alpha}) = \Phi(-q_{\alpha}) = 1 - \Phi(q_{\alpha}) αλ=Pλ=λ0(nλ0Xnˉ−λ0<−qα)=Φ(−qα)=1−Φ(qα)
when λ > λ 0 \lambda \gt \lambda_0 λ>λ0, we have:
X n ˉ ⟶ P λ \bar{X_n}\overset{\mathbb{P}}{\longrightarrow} \lambda Xnˉ⟶Pλ, then by continuous mapping theorem
T n , λ 0 ⟶ P n λ − λ 0 λ 0 ⟶ P n → ∞ + ∞ T_{n, \lambda_0} \overset{\mathbb{P}}{\longrightarrow} \sqrt{n} \frac{\lambda-\lambda_0}{\sqrt{\lambda_0}} \underset{n\to\infty}{\overset{\mathbb{P}}{\longrightarrow}} +\infty Tn,λ0⟶Pnλ0λ−λ0n→∞⟶P+∞, therefore,
α λ = P λ > λ 0 ( n X n ˉ − λ 0 λ 0 < − q α ) ⟶ P P λ > λ 0 ( n λ − λ 0 λ 0 < − q α ) ⟶ P P λ > λ 0 ( + ∞ < − q α ) → 0 \alpha_{\lambda} = P_{\lambda > \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} < -q_{\alpha}) \\ \overset{\mathbb{P}}{\longrightarrow} P_{\lambda > \lambda_0}(\sqrt{n} \frac{\lambda-\lambda_0}{\sqrt{\lambda_0}} < -q_{\alpha}) \\ \overset{\mathbb{P}}{\longrightarrow} P_{\lambda > \lambda_0}(+\infty < -q_{\alpha}) \rightarrow 0 αλ=Pλ>λ0(nλ0Xnˉ−λ0<−qα)⟶PPλ>λ0(nλ0λ−λ0<−qα)⟶PPλ>λ0(+∞<−qα)→0
thus, the maximum of α λ \alpha_{\lambda} αλ is achieved at λ = λ 0 \lambda = \lambda_0 λ=λ0, which is the boundary of Θ 0 \Theta_0 Θ0