证明:I类错误在边界点取到最大值

这篇博客讨论了在一维参数空间中,对于单侧检验,最大一类错误(第一类错误)发生在参数边界的情况。错误的证明通过不正确的T_n定义和混淆了变量与常数,导致结论错误。正确的证明则展示了当参数等于边界值时,错误率达到最大,并且当参数大于边界值时,错误率趋近于0。
摘要由CSDN通过智能技术生成

问题描述:

X 1 , X 2 , . . . , X n ∼ i . i . d P o i s ( λ ) , λ > 0 X_1, X_2, ..., X_n \overset{i.i.d}{\sim} Pois(\lambda), \lambda > 0 X1,X2,...,Xni.i.dPois(λ),λ>0 for some unknown λ \lambda λ

H 0 : λ ≥ λ 0 , H 1 : λ < λ 0 , λ 0 > 0 H_0: \lambda \ge \lambda_0, H_1: \lambda \lt \lambda_0, \lambda_0 > 0 H0:λλ0,H1:λ<λ0,λ0>0

theorem: the maximum of the type 1 error is achieved at the boundary of Θ 0   a n d   Θ 1 \Theta_0\ and\ \Theta_1 Θ0 and Θ1 for a one-sided tests, where the parameter space is 1-dimensional.

the wrong proof:

α λ = P λ ∈ Θ 0 ( ψ = 1 ) w h e r e , ψ = I ( T n < − q α ) , w i t h   l e v e l   α \alpha_\lambda = P_{\lambda \in \Theta_0}(\psi = 1) \\ where, \psi = \mathbb{I}(T_n < -q_\alpha), with\ level\ \alpha αλ=PλΘ0(ψ=1)where,ψ=I(Tn<qα),with level α

on this question, let T n = n X n ˉ − λ λ T_n=\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} Tn=n λ Xnˉλ

then, α λ = P λ ∈ Θ 0 ( T n < − q α ) = P λ ≥ λ 0 ( n X n ˉ − λ λ < q − α ) = P λ ≥ λ 0 ( n X n ˉ − λ λ < − q α ) \alpha_{\lambda} = P_{\lambda \in \Theta_0}(T_n < -q_{\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} < q_{-\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} < -q_{\alpha}) αλ=PλΘ0(Tn<qα)=Pλλ0(n λ Xnˉλ<qα)=Pλλ0(n λ Xnˉλ<qα)

let T n , λ = n X n ˉ − λ λ T_{n, \lambda}= \sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} Tn,λ=n λ Xnˉλ and T n , λ 0 = n X n ˉ − λ 0 λ 0 T_{n, \lambda_0}= \sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} Tn,λ0=n λ0 Xnˉλ0

when λ ≥ λ 0 \lambda \ge \lambda_0 λλ0, we have:

λ ≥ λ 0 ⇒   − λ ≤ − λ 0 ⇒   X n ˉ − λ ≤ X n ˉ − λ 0 ⇒ X n ˉ − λ λ 0 ≤ X n ˉ − λ 0 λ 0 ⇒ X n ˉ − λ λ 0 ≤ X n ˉ − λ λ ≤ X n ˉ − λ 0 λ 0 ⇒ T n , λ ≤ T n , λ 0 \lambda \ge \lambda_0 \\ \Rightarrow\ -\lambda \le -\lambda_0 \\ \Rightarrow\ \bar{X_n} - \lambda \le \bar{X_n} - \lambda_0 \\ \Rightarrow \frac{\bar{X_n}-\lambda}{\lambda_0} \le \frac{\bar{X_n}-\lambda_0}{\lambda_0} \\ \Rightarrow \frac{\bar{X_n}-\lambda}{\lambda_0} \le\frac{\bar{X_n}-\lambda}{\lambda} \le \frac{\bar{X_n}-\lambda_0}{\lambda_0} \\ \Rightarrow T_{n, \lambda} \le T_{n, \lambda_0} λλ0 λλ0 XnˉλXnˉλ0λ0Xnˉλλ0Xnˉλ0λ0XnˉλλXnˉλλ0Xnˉλ0Tn,λTn,λ0

let event A : T n , λ < − q a A : T_{n,\lambda} \lt -q_a A:Tn,λ<qa and B : T n , λ 0 < − q a B : T_{n,\lambda_0} \lt -q_a B:Tn,λ0<qa,
B ⊆ A ⇔ P ( B ) ≤ P ( A ) ⇔ P ( T n , λ 0 < − q a ) ≤ P ( T n , λ < − q a ) B \subseteq A \Leftrightarrow P(B) \le P(A) \Leftrightarrow P(T_{n,\lambda_0} \lt -q_a) \le P(T_{n,\lambda} \lt -q_a) BAP(B)P(A)P(Tn,λ0<qa)P(Tn,λ<qa)

which means: the minimum of the type 1 error is achieved at the boundary of Θ 0 \Theta_0 Θ0

what’s the problem in this proof? --hint, the wrong T n T_n Tn and the confusion of variable and constant.

the correct proof:

α λ = P λ ∈ Θ 0 ( ψ = 1 ) w h e r e , ψ = I ( T n < − q α ) , w i t h   l e v e l   α \alpha_\lambda = P_{\lambda \in \Theta_0}(\psi = 1) \\ where, \psi = \mathbb{I}(T_n < -q_\alpha), with\ level\ \alpha αλ=PλΘ0(ψ=1)where,ψ=I(Tn<qα),with level α

on this question, let T n = n X n ˉ − λ 0 λ 0 T_n=\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} Tn=n λ0 Xnˉλ0

then, α λ = P λ ∈ Θ 0 ( T n < − q α ) = P λ ≥ λ 0 ( n X n ˉ − λ 0 λ 0 < q − α ) = P λ ≥ λ 0 ( n X n ˉ − λ λ < − q α ) \alpha_{\lambda} = P_{\lambda \in \Theta_0}(T_n < -q_{\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} < q_{-\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} < -q_{\alpha}) αλ=PλΘ0(Tn<qα)=Pλλ0(n λ0 Xnˉλ0<qα)=Pλλ0(n λ Xnˉλ<qα)

let T n , λ 0 = n X n ˉ − λ 0 λ 0 T_{n, \lambda_0}= \sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} Tn,λ0=n λ0 Xnˉλ0

when λ = λ 0 \lambda = \lambda_0 λ=λ0 we have:

X n ˉ ⟶ P λ 0 \bar{X_n}\overset{\mathbb{P}}{\longrightarrow} \lambda_0 XnˉPλ0, then

T n , λ 0 ⟶ d N ( 0 , 1 ) T_{n, \lambda_0} \overset{d}{\longrightarrow} N(0,1) Tn,λ0dN(0,1), because of CLT

α λ = P λ = λ 0 ( n X n ˉ − λ 0 λ 0 < − q α ) = Φ ( − q α ) = 1 − Φ ( q α ) \alpha_{\lambda} = P_{\lambda = \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} < -q_{\alpha}) = \Phi(-q_{\alpha}) = 1 - \Phi(q_{\alpha}) αλ=Pλ=λ0(n λ0 Xnˉλ0<qα)=Φ(qα)=1Φ(qα)

when λ > λ 0 \lambda \gt \lambda_0 λ>λ0, we have:

X n ˉ ⟶ P λ \bar{X_n}\overset{\mathbb{P}}{\longrightarrow} \lambda XnˉPλ, then by continuous mapping theorem

T n , λ 0 ⟶ P n λ − λ 0 λ 0 ⟶ P n → ∞ + ∞ T_{n, \lambda_0} \overset{\mathbb{P}}{\longrightarrow} \sqrt{n} \frac{\lambda-\lambda_0}{\sqrt{\lambda_0}} \underset{n\to\infty}{\overset{\mathbb{P}}{\longrightarrow}} +\infty Tn,λ0Pn λ0 λλ0nP+, therefore,

α λ = P λ > λ 0 ( n X n ˉ − λ 0 λ 0 < − q α ) ⟶ P P λ > λ 0 ( n λ − λ 0 λ 0 < − q α ) ⟶ P P λ > λ 0 ( + ∞ < − q α ) → 0 \alpha_{\lambda} = P_{\lambda > \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} < -q_{\alpha}) \\ \overset{\mathbb{P}}{\longrightarrow} P_{\lambda > \lambda_0}(\sqrt{n} \frac{\lambda-\lambda_0}{\sqrt{\lambda_0}} < -q_{\alpha}) \\ \overset{\mathbb{P}}{\longrightarrow} P_{\lambda > \lambda_0}(+\infty < -q_{\alpha}) \rightarrow 0 αλ=Pλ>λ0(n λ0 Xnˉλ0<qα)PPλ>λ0(n λ0 λλ0<qα)PPλ>λ0(+<qα)0

thus, the maximum of α λ \alpha_{\lambda} αλ is achieved at λ = λ 0 \lambda = \lambda_0 λ=λ0, which is the boundary of Θ 0 \Theta_0 Θ0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值