目录
直接选择排序
基本思想
每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的 数据元素排完 。
在元素集合array[i]--array[n-1]中选择关键码最大(小)的数据元素。若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换。在剩余的array[i]——array[n-2](array[i+1]——array[n-1])集合中,重复上述步骤,直到集合剩余1个元素。
代码实现
我们完善一下上面的思想,每次遍历找出最大的元素和最小的元素,存放到数组相对位置。
void Swap(int* a, int* b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}
// 选择排序
void SelectSort(int* a, int n)
{
//记录起点和终点,每次把最大和最小的放起点和终点
int begin = 0, end = n - 1;
while (begin < end)
{
//假设起点元素最大或最小
int mini = begin, maxi = begin;
for (int i = begin + 1; i <= end; i++)
{
if (a[i] < a[mini])
mini = i;
if (a[i] > a[maxi])
maxi = i;
}
Swap(&a[begin], &a[mini]);
if (maxi == begin)//如果没有这句代码会有什么问题呢?
maxi = mini;
Swap(&a[end], &a[maxi]);
//起点和终点向中心靠拢
begin++; end--;
}
}
没有那段编码会发生什么呢?看下图所示:
可以看到 5 4 没有按照排序放到指定位置,为什么会出现这种情况呢?
所以一定要加上这句代码,保证排序的成功。
时间复杂度计算
特性总结
- 直接选择排序思考非常好理解,但是效率不是很好,实际中很少使用
- 时间复杂度:O(N^2)
- 空间复杂度:O(1)
- 稳定性:不稳定 (不能保证原来所具有的相对次序)
堆排序
基本思想
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
上图图像来源于:抖音博主:懒洋小课堂
代码实现
// 堆排序
void AdjustDown(int* a, int n, int root)
{
int parent = root;
int child = parent * 2 + 1;
while (child < n)
{
// 选左右孩纸中大的一个
if (child + 1 < n && a[child + 1] > a[child])
{
++child;
}
//如果孩子大于父亲,进行调整交换
if (a[child] > a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int* a, int n)
{
// 建大堆
for (int i = (n - 1 - 1) / 2; i >= 0; --i)
{
AdjustDown(a, n, i);
}
int end = n - 1;
while (end > 0)
{
Swap(&a[0], &a[end]);
// 选出次大的
AdjustDown(a, end, 0);
--end;
}
}
时间复杂度在这里不多详细讲解,在数据结构专栏中二叉树中会认真解释如何计算。这里只需要记住堆排序的时间复杂度为O(N*logN).
特性总结
- 堆排序使用堆来选数,效率就高了很多。
- 时间复杂度:O(N*logN)
- 空间复杂度:O(1)
- 稳定性:不稳定 (不能保证原来所具有的相对次序)