斯坦福大学吴恩达教授Machine Learning课程
文章平均质量分 90
Zkaisen
无论怎么样,努力的干下去,迷茫的未来应该会有惊喜在等着我们!
展开
-
2. 代价函数与梯度下降
2.1模型描述**预测房价问题**以之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示:我们将要用来描述这个回归问题的标记如下:m 代表训练集中实例的数量x 代表特征/输入变量y 代表目标变量/输出变量(x,y) 代表训练集中的实例(x^((i)),y^((i))) 代表第i 个观察实例h 代表学习算法的解决方案或函数也称为假设(hypothesis)尽量找出一个函数使得其能够很好地拟合已知训练集的样本点这是一个监督学习的过..原创 2022-01-18 18:37:06 · 1678 阅读 · 0 评论 -
斯坦福大学吴恩达教授Machine Learning课程笔记
01什么是机器学习?MachineLearning(机器学习)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。在过去的十年中,机器学习帮助我们自动驾驶汽车,有效的语音识别,有效的网络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍,你可能会使用这一天几十倍而不自知。回溯到50年代Samuel的定义:在进行特定编程原创 2022-01-16 22:38:57 · 964 阅读 · 0 评论