nlp
文章平均质量分 56
磐创 AI
这个作者很懒,什么都没留下…
展开
-
使用 NLTK 对文本进行清洗,索引工具
使用 NLTK 对文本进行清洗,索引工具EN_WHITELIST = '0123456789abcdefghijklmnopqrstuvwxyz ' # space is included in whitelistEN_BLACKLIST = '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~\''FILENAME = 'data/chat.txt'limit = {翻译 2017-08-08 12:05:19 · 1872 阅读 · 0 评论 -
TensorFlow 聊天机器人开源项目评测第一期:DeepQA
聊天机器人开源项目评测第一期:DeepQAhttps://github.com/Conchylicultor/DeepQA用 i5 的笔记本早上运行到下午,跑了 3 轮的结果,最后效果并不理想。官方默认是 30 轮,3 轮太少了,稍后用 GPU 跑了继续更新。1.可以顺利运行,并没有 Tensorflow 版本问题。 我的环境: TensorFlow detected: v1.3.0Loss 变原创 2017-09-02 20:16:07 · 2535 阅读 · 0 评论 -
Tensorflow 基于分层注意网络的文件分类器
After the exercise of building convolutional, RNN, sentence level attention RNN, finally I have come to implement Hierarchical Attention Networks for Document Classification. I’m very thankful to Keras翻译 2017-09-20 21:20:06 · 753 阅读 · 0 评论 -
DNN模型训练词向量原理
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识! 1词向量在NLP里,最细的粒度是词语,由词语再组成句子,段落,文章。所以处理NLP问题时,怎么合理的表示词语就成了NLP领域中最先需要解决的问题。因为语言模型的输入词语必须是数值化的,所以必须想到一种方式将字符串形式的输入词语转变成数值型。由此,人们想到了...原创 2018-04-04 20:26:45 · 4920 阅读 · 0 评论 -
基于word2vec训练词向量(二)
作者:汪晨一.基于Hierarchical Softmax的word2vec模型的缺点二.Negative SampliNg模型三.Negative Sampling优化原理四.Negative Sampling选取负例词原理五.代码实现六.总结一.基于Hierarchical Softmax的word2vec模型的缺点上篇说了Hierarchical Softma...原创 2018-04-19 22:51:05 · 4253 阅读 · 0 评论 -
基于Doc2vec训练句子向量
目录一.Doc2vec原理二.代码实现三.总结&nbsp;一.Doc2vec原理前文总结了Word2vec训练词向量的细节,讲解了一个词是如何通过word2vec模型训练出唯一的向量来表示的。那接着可能就会想到,有没有什么办法能够将一个句子甚至一篇短文也用一个向量来表示呢?答案是肯定有的,构建一个句子向量有很多种方法,今天我们接着word2vec来介绍下Doc2vc,看下D...原创 2018-05-15 18:15:48 · 11122 阅读 · 4 评论 -
Python NLP库top6的介绍和比较
文章来源:ActiveWizardshttps://medium.com/activewizards-machine-learning-company/comparison-of-top-6-python-nlp-libraries-c4ce160237eb译者 | Revolver编辑 | 磐石出品 | 磐创AI技术团队自然语言处理(NLP)在今天已经变得越来越流行,尤其是在...原创 2018-07-23 12:30:50 · 2379 阅读 · 0 评论 -
干货 | 史上最全中文分词工具整理
作者 |fendouai一.中文分词分词服务接口列表二.准确率评测:THULAC:与代表性分词软件的性能对比我们选择LTP-3.2.0、ICTCLAS(2015版)、jieba(C++版)等国内具代表性的分词软件与THULAC做性能比较。我们选择Windows作为测试环境,根据第二届国际汉语分词测评(The SecondInternational ...原创 2018-08-25 00:16:06 · 52705 阅读 · 5 评论 -
用卷积神经网络和自注意力机制实现QANet(问答网络)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识!在这篇文章中,我们将解决自然语言处理(具体是指问答)中最具挑战性但最有趣的问题之一。我们将在Tensorflow中实现Google的QANet。就像它的机器翻译对应的Transformer网络一样,QANet根本不使用RNN,这使得训练/测试更快。&nbsp;我...原创 2018-09-25 14:31:32 · 8610 阅读 · 3 评论 -
近期 github 机器学习热门项目top5
磐创智能-专注机器学习深度学习的教程网站http://panchuang.net/磐创AI-智能客服,聊天机器人,推荐系统http://panchuangai.com/【导读】:GitHub是数据科学家希望从人群中脱颖而出的宝贵平台,拥有来自顶尖技术巨头(如Google、Facebook、IBM、NVIDIA等)的开放源码项目。本文为大家总结了近期最热门的机器学习项目top5。欢迎大家点击上方...原创 2018-12-17 11:16:12 · 528 阅读 · 0 评论 -
近期 github 机器学习热门项目top5
磐创智能-专注机器学习深度学习的教程网站 http://panchuang.net/磐创AI-智能客服,聊天机器人,推荐系统 http://panchuangai.com/【导读】:Github是全球最大的开源代码社区,本文为大家总结了2108年11月最热门的机器学习项目top5。欢迎大家点击上方蓝字关注我们的公众号:磐创AI,获取更多的机器学习、深度学习资源。 本文是近期Git...原创 2018-12-17 11:22:49 · 624 阅读 · 0 评论 -
TensorFlow系列专题(十一):RNN的应用及注意力模型
磐创智能-专注机器学习深度学习的教程网站 http://panchuang.net/磐创AI-智能客服,聊天机器人,推荐系统 http://panchuangai.com/目录: 循环神经网络的应用 文本分类 序列标注 机器翻译 Attention-based model RNN系列总结 循环神经网络的应用目前循环神经网络已经...原创 2018-12-17 15:11:34 · 1109 阅读 · 1 评论 -
聊天机器人资源合集:项目,语聊,论文,教程。
Awesome ChatbotGithub:https://github.com/fendouai/Awesome-ChatbotChatbotParlAIA framework for training and evaluating AI models on a variety of openly available dialog datasets.https://github.com/faceb原创 2017-09-01 13:02:54 · 2218 阅读 · 0 评论 -
一个使用 Python 的人工智能聊天机器人框架
一个Python 的 AI Chatbot框架建立一个聊天室可以听起来很棒,但它是完全可行的。 IKY是一个内置于Python中的AI动力对话对话界面。 使用IKY,很容易创建自然语言会话场景,无需编码工作。 平滑的UI使得轻松创建和训练机器人的对话,并且随着从与人们的对话中学习而不断变得更聪明。 IKY可以通过将API与该平台集成在您所选择的任何渠道(如Messenger,Slack等)上。您不需翻译 2017-09-01 10:51:25 · 5379 阅读 · 0 评论 -
StarSpace是用于高效学习实体向量的通用神经模型
StarSpace是用于高效学习实体向量的通用神经模型,用于解决各种各样的问题:学习单词,句子或文档级嵌入。 文本分类或任何其他标签任务。 信息检索:实体/文件或对象集合的排序,例如 排名网络文件。 度量/相似性学习,例如 学习句或文档相似性。 基于内容或协作过滤的建议,例如 推荐音乐或视频。 嵌入图表,例如 多关系图如Freebase。项目地址:https://github.com/fa翻译 2017-09-16 10:48:38 · 2596 阅读 · 0 评论 -
tf.contrib.seq2seq.sequence_loss example:seqence loss 实例代码
tf.contrib.seq2seq.sequence_loss example:seqence loss 实例代码#!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tfimport numpy as npparams=np.random.normal(loc=0.0,scale=1.0,size=[10,10])e原创 2017-08-08 21:16:23 · 1981 阅读 · 0 评论 -
人工智能:学习用对抗神经网络加密来保护通信
这是一个稍微更新的模型,用于“学习用对抗神经网络加密来保护通信”的论文。我们想神经网络是否可以学习使用秘密密钥来保护来自其他神经网络的信息。具体来说,我们专注于确保多代理系统中的机密属性,并且我们根据对手指定这些属性。因此,一个系统可以由名叫Alice和Bob的神经网络组成,我们的目标是限制名为Eve的第三个神经网络从窃听Alice和Bob之间的通信中学到的东西。我们不为这些神经网络规定具体的加密算翻译 2017-08-16 11:15:48 · 1727 阅读 · 1 评论 -
nltk 中的 sents 和 words
nltk 中的 sents 和 words ,为后续处理做准备。#!/usr/bin/env python# -*- coding: utf-8 -*-from nltk.corpus import gutenbergsents = gutenberg.sents("burgess-busterbrown.txt")print(sents[1:20])words =原创 2017-08-01 23:31:19 · 2724 阅读 · 0 评论 -
nltk 获取 gutenberg 语料,gensim 生成词库和 onehot 编码
nltk 获取 gutenberg 语料gensim 生成词库和 onehot 编码正在尝试基于 Tensorflow LSTM 模型开发另外一个项目,需要自然语言处理的工具和语料。import nltkimport numpy as npfrom nltk.corpus import gutenbergfrom gensim import corpora, models原创 2017-08-02 17:06:30 · 1304 阅读 · 0 评论 -
谷歌发布 TensorFlow Serving
TensorFlow服务是一个灵活的,高性能的机器学习模型的服务系统,专为生产环境而设计。 TensorFlow服务可以轻松部署新的算法和实验,同时保持相同的服务器体系结构和API。 TensorFlow服务提供与TensorFlow模型的即开即用集成,但可以轻松扩展到其他类型的模型和数据。TensorFlow Serving is a flexible, high-performance serv翻译 2017-08-09 20:18:54 · 446 阅读 · 0 评论 -
用序列到序列和注意模型实现的翻译:Translation with a Sequence to Sequence Network and Attention
In this project we will be teaching a neural network to translate from French to English.最后效果:[KEY: > input, = target, < output]> il est en train de peindre un tableau .= he is painting a p翻译 2017-08-06 20:13:51 · 711 阅读 · 0 评论 -
了解对自然语言处理的卷积神经网络
了解对自然语言处理的卷积神经网络 当我们听到卷积神经网络(CNN)的时候,我们通常会想到计算机视觉。 CNN负责图像分类的重大突破,是当今大多数计算视觉系统的核心,从Facebook的自动照片标签到自动驾驶。最近我们也开始将CNN应用于自然语言处理中的问题,并获得了一些有趣的结果。 在这篇文章中,我将尝试总结一下CNN是什么,以及它们如何在NLP中使用。 对于“计算机视觉”用例来说,CNN背后的直翻译 2017-08-21 16:09:14 · 443 阅读 · 0 评论 -
在TensorFlow中实现文本分类的卷积神经网络
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/jiegzhan/multi-class-text-classification-cnn在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型。 本文提出的模型在一系列文本分类任务(如情绪分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准翻译 2017-08-21 16:09:52 · 930 阅读 · 0 评论 -
Keras 多层感知机 多类别的 softmax 分类模型代码
Multilayer Perceptron (MLP) for multi-class softmax classification:from keras.models import Sequentialfrom keras.layers import Dense, Dropout, Activationfrom keras.optimizers import SGD# 生成随机数据impor原创 2017-08-07 15:15:46 · 2749 阅读 · 0 评论 -
5步做一个 TensorFlow 聊天机器人:DeepQA
项目截图:实测截图:一步一步教程:1.下载这个项目: https://github.com/Conchylicultor/DeepQA2.下载训练好的模型:https://drive.google.com/file/d/0Bw-phsNSkq23OXRFTkNqN0JGUU0/view(如果网址不能打开的话,今晚我会上传到百度网盘,分享到:http://www.tensorflownews.com原创 2017-09-05 15:57:28 · 3219 阅读 · 0 评论 -
我用 tensorflow 实现的“一个神经聊天模型”:一个基于深度学习的聊天机器人
概述这个工作尝试重现这个论文的结果 A Neural Conversational Model (aka the Google chatbot). 它使用了循环神经网络(seq2seq 模型)来进行句子预测。它是用 python 和 TensorFlow 开发。程序的加载主体部分是参考 Torch的 neuralconvo from macournoyer.现在, DeepQA 支持一下对话语原创 2017-09-05 17:12:55 · 1717 阅读 · 0 评论 -
10个全网最具创意的聊天机器人:漫威和联合国儿童基金会都在尝试使用聊天机器人
如果你曾经使用过客户支持的在线聊天服务,你可能会经历这种含糊不清的怀疑,即你正在聊天的“人”可能实际上是一个机器人。就像我们在无数电影中看到的那些非常僵硬的机器人 - 悲惨,可怜的机器受到痛苦限制的情感范围折磨,徒劳地希望获得更大程度的人性 - 聊天机器人通常听起来接近人类,但并不完全是。他们说话内容很尴尬,节奏混乱。聊天机器人插图爱他们或恨他们,聊天机器人就在这里。近年来,聊天机器人已经...转载 2019-08-11 21:34:06 · 823 阅读 · 0 评论