Mac系统安装和配置tomcat步骤详解

本文详细介绍Apache Tomcat的下载、本地存放、启动与关闭步骤,包括如何修改端口及设置密码,帮助读者快速掌握Tomcat的基本操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:下载

打开Apache Tomcat官网,选择需要的版本下载:

这里写图片描述

二:存放到本地

文件夹重名民为ApacheTomcat,放到/Users/计算机名/Library/目录下

这里写图片描述

三:启动Tomcat

打开Terminal,进入ApacheTomcat所在目录的bin目录下

$:cd /Users/mymac/Library/ApacheTomcat/bin

启动Tomcat

$:./startup.sh

如果出现:

-bash: ./startup.sh: Permission denied

是因为用户没有权限,而导致无法执行.需要用命令chmod 修改一下bin目录下的.sh权限,没有出现说明启动成功

$:chmod u+x *.sh

修改完后重新之执行启动命令:./startup.sh即可启动,界面如下

这里写图片描述

验证安装是否成功

在浏览器地址栏输入:http://localhost:8080(或者在手机浏览器中输入电脑IP+端口号也可以访问)显示如下界面:

这里写图片描述

四:关闭Tomcat

$:./shutdown.sh

查看Tomcat版本信息

$:sh catalina.sh version

五:ApacheTomcat目录结构:

这里写图片描述

1>bin:存放tomcat命令

2>conf:存放tomcat配置信息,里面的server.xml文件是核心的配置文件

3>lib:支持tomcat软件运行的jar包和技术支持包(如servlet和jsp)

4>logs:运行时的日志信息

5>temp:临时目录

6>webapps:共享资源文件和web应用目录

7>work:tomcat的运行目录.jsp运行时产生的临时文件就存放在这里


修改端口号

服务器的默认端口是8080,也可以将其改成自定义的端口,为了避免与系统端口冲突,必须设置为1024以上,例如设置为8888

用记事本打开ApacheTomcat的conf目录下的server.xml文件,将以下语句的port值8080改为自定义的端口号:(例如8020)

<Connector port="8020" protocol="HTTP/1.1"
          connectionTimeout="20000"
          redirectPort="8443" />

重新启动服务器后输入localhost:8080无效,需要输入localhost:8020就可以打开服务器的界面了.

密码设置

conf目录的tomcat-users.xml文件里</tomcat-users>上面加入以下代码:

<role rolename="manager-gui"/>
<user username="tomcat" password="tomcat" roles="manager-gui"/>
---

因为xml的标签都要关闭,还要重启tomcat. 重新打开http://localhost:8080Tomcat主界面,点击 Manager App等按钮账号和密码输入tomcat即可登陆

原文地址:来自脚本之家

扫描二维码实时获取更多实用文章

这里写图片描述

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值