Which method is ineffective for copywriting with large models?
问题:使用大模型进行文案创作时,哪种方法效果最差?
A. Defining goals and audience
A. 明确目标和受众
B. Providing clear instructions
B. 提供清晰指令
C. Multi-round generation
C. 多轮生成
D. Blindly trusting initial drafts
D. 盲目信任初稿
答案:D
这个问题问的是用大模型写文案时哪种方法最没用。正确答案是D选项,也就是盲目信任初稿。为啥这么说呢?咱们先拆开看看每个选项背后的逻辑。明确目标和受众这个事,就像你要出门旅游总得先知道去哪儿吧?要是连自己写文案为了卖产品还是做品牌宣传都搞不清,那大模型就算再厉害也只能瞎猜。比如你要给中老年人推保健品,结果模型按年轻人爱看的网络梗来写,肯定要翻车。所以A选项确实是基础中的基础。
再说B选项的提供清晰指令。这就好比你去餐馆点菜,要是只说"随便来点吃的",厨师可能给你端碗白米饭。大模型需要具体的关键词、语气要求、内容框架。比如说要写手机广告,光说"写个广告词"不行,得说"用科技感语言突出长续航和摄像功能,带三个感叹号"。指令越明确,模型才能对准方向输出。
C选项的多轮生成其实是高手都在用的技巧。第一稿可能只完成60分,但通过追问模型"能不能加入用户评价数据?"或者"换个更口语化的表达",每次迭代都能提升质量。这就像雕塑,第一刀只是粗胚,后面慢慢修细节。有时候甚至要推翻重来,让模型用不同角度重新构思。
那D选项的问题在哪呢?大模型的初稿往往存在几个坑:可能会重复用词,比如同一段出现三次"卓越品质";有时候会编造不存在的产品参数;或者语气过于生硬像机器人。最要命的是,有些文案需要结合企业实际数据或品牌调性,模型根本不知道这些内部信息。比如公司今年主推环保理念,但初稿完全没体现,这时候盲目信任初稿就直接跑偏了。之前见过有个案例,某品牌用模型生成的促销文案里竟然出现了竞品名字,这就是没审核初稿惹的祸。所以正确的做法应该是把初稿当素材库,人工筛选调整,而不是直接Ctrl+C/Ctrl+V。
Which company developed DALL·E?
问题:DALL·E由哪家公司开发?
A. Google
A. 谷歌
B. Facebook
B. 脸书
C. OpenAI
C. OpenAI
D. Microsoft
D. 微软
答案:C
DALL·E这个图像生成模型到底是谁家的孩子?正确答案是C选项OpenAI。可能有人会疑惑微软不是和OpenAI合作密切吗?这里要理清楚合作关系和实际开发主体的区别。OpenAI虽然接受微软投资,但仍然是独立运营的机构。DALL·E系列从第一代到后来的DALL·E2、3都是OpenAI实验室自主研发的,就像他们家的GPT系列语言模型一样。
那其他选项为啥不对呢?谷歌确实有自己的图像生成模型比如Imagen,但命名规则完全不同。而且谷歌重点在搜索引擎整合,他们的AI产品更多是辅助搜索功能。脸书(现在叫Meta)主攻元宇宙和VR领域,虽然也有AI研究,但更偏向社交应用和虚拟现实。微软自己主要做产品化落地,比如把OpenAI的技术整合到Office套件里,但底层模型开发还是OpenAI主导。
这里有个有意思的细节,DALL·E这个名字其实是个文字游戏。前半部分致敬超现实主义艺术家达利(Dalí),后半部分来自皮克斯的机器人瓦力(WALL-E),暗示这个模型能把天马行空的想象变成视觉现实。这种命名风格非常OpenAI,就像GPT(GenerativePre-trainedTransformer)用技术术语缩写命名。知道这个小彩蛋也能帮助记忆所属公司。
What is AIGC’s advantage over human-driven content generation?
问题:相较于人工内容生成,AIGC(生成式AI)的优势是什么?
A. Faster speed
A. 速度更快
B. Higher professionalism
B. 专业性更强
C. Higher costs
C. 成本更高
D. Greater stability
D. 稳定性更佳
答案:A
AIGC相比人类创作的最大优势选A速度更快,这个答案其实有点反常识。很多人可能觉得专业性或稳定性更重要,但仔细想想,速度确实是碾压级优势。一个文案人员写篇800字推文可能要2小时,AI可能20秒出10个版本。特别是需要大批量生成的时候,比如电商平台要写十万条商品描述,人工根本不可能在一天内完成。
B选项说专业性更强其实要看具体情况。在医疗法律等需要严格审核的领域,AI可能反而容易出错。但如果是写社交媒体文案这种创意工作,AI确实能快速调用全网数据,整合最新网络热梗,这点可能比人类更"潮"。不过题目问的是普遍优势,所以速度这个选项更普适。
C选项成本更高明显是错的,企业用AI生成内容主要就是为了降本增效。虽然训练大模型确实烧钱,但平摊到单次使用成本几乎可以忽略不计。D选项稳定性更佳其实是个陷阱,AI容易受提示词影响,同一指令不同时间可能输出不同结果。比如周一让写"夏日清凉"主题文案可能侧重空调,周五可能变成冰淇淋,这种波动性反而需要人工把控。
举个真实例子,某MCN机构用AI给网红批量生成视频脚本。原本5个编剧每天最多产20个脚本,现在AI十分钟能出200个,虽然要筛选修改,但整体效率提升十倍不止。这就是速度优势的直接体现,特别是在信息迭代飞快的领域,比如追热点事件,AI能抢在流量高峰前产出内容,这点人类根本做不到。
Which element is excluded from the universal prompt formula taught in the course?
问题:课程中提到的通用提示公式不包含以下哪一要素?
A. Role definition
A. 角色定义
B. Background context
B. 背景信息
C. Providing examples
C. 提供示例
D. Task objectives
D. 任务目标
答案:C
这个问题问的是通用提示公式里不包含哪个要素,正确答案是C选项“提供示例”。咱们先理清楚通用提示公式的几个核心要素。角色定义(A选项)说白了就是给AI“戴帽子”,比如“你是一个有10年经验的健身教练”,这决定了AI回答的专业性和角度。背景信息(B选项)是给AI铺路,比如“要给新手爸妈推荐婴儿推车”,这样AI就知道该从安全性、便携性这些点切入。任务目标(D选项)就更直接了,比如“写3条小红书风格的文案,每条带2个emoji”,这就是明确告诉AI要交什么作业。
那为什么“提供示例”不算在内呢?其实在实操中,给例子确实能让AI输出更贴近需求。比如你想让AI写手机广告,加上“参考类似‘充电5分钟,通话2小时’这种强调功能的句式”,效果会更好。但通用公式更强调“必备项”而不是“加分项”。就像做西红柿炒蛋,盐和油是必加的,而葱花属于锦上添花。课程里可能认为新手先掌握基础框架更重要,等熟练了再加示例这类高阶技巧。
举个例子,有个学员想用AI写留学文书,指令里只写了角色(资深留学顾问)、背景(申请美国计算机硕士)、任务目标(突出项目经验和职业规划)。虽然没给范文案例,但AI还是产出了结构完整的初稿。后来他加入了一篇成功案例的片段,发现AI模仿了案例中的故事化表达,质量确实提升明显。但这种情况属于优化阶段的操作,不能算基础提示公式的必备部分。所以课程里把“提供示例”排除在外,应该是考虑到教学重点在于先教会骨架搭建,血肉填充可以后期再学。
What follows initial draft generation in copywriting workflows?
问题:文案工作流程中,初稿生成后的下一步是什么?
A. Editing and refinement
A. 编辑和润色
B. Data collection
B. 数据收集
C. Immediate publication
C. 直接发布
D. Prompt design
D. 提示设计
答案:A
正确答案是A选项“编辑和润色”,这题考的是文案工作流的常识。初稿生成就像刚和好的面团,得揉捏整形才能进烤箱。AI生成的文案常见的问题包括:用词重复(比如一段里出现三次“极致体验”)、语气太官方(比如“本品采用创新科技”)、或者细节缺失(比如没写具体优惠截止日期)。这时候就需要人工介入,把生硬的AI语言转化成“人话”。
有人可能会问:为什么不直接发布?去年有个真实翻车案例,某美妆品牌用AI写了个精华液文案,里面写着“连续使用28天皱纹减少300%”,明显违背常识,结果被消费者截图群嘲。这就是没做人工审核的后果。再比如AI可能把“买一送一”理解成永久活动,而实际只搞三天促销,不修改就会引发纠纷。
编辑润色具体要干啥呢?大概分三层:第一层是基础检查,改错别字、调标点、删掉啰嗦的话;第二层是风格适配,比如把“本品具有卓越性能”改成“打游戏不掉帧,刷剧续航一整天”;第三层是加钩子,比如在文末插一句“库存只剩50件啦”制造紧迫感。有时候还要结合品牌调性,比如走文艺路线的品牌,就得把AI写的“超划算”改成“邂逅春日限时美好”。这个过程就像给AI的初稿穿衣服化妆,让它从素颜变成能出门见人的状态。
What is the first step in the AIDA model?
问题:AIDA模型的第一个步骤是什么?
A. Interest
A. 激发兴趣
B. Desire
B. 唤起欲望
C. Action
C. 促成行动
D. Attention
D. 引起注意
答案:D
这题考AIDA模型的基础结构,正确答案D选项“引起注意”是铁打的起点。这个模型就像追姑娘的四步法:先得让人家注意到你(Attention),然后觉得你这人有点意思(Interest),接着产生“想深入了解”的欲望(Desire),最后才能约出去吃饭(Action)。如果连注意力都抓不住,后面全是白搭。
举个接地气的例子:你在刷短视频,前3秒如果没出现“震惊!”“手慢无!”或者诱人的美食特写,大概率直接划走了。这就是Attention阶段的核心——用强刺激突破信息过滤。比如有个卖颈椎按摩仪的淘宝详情页,首图不是产品外观,而是个年轻人瘫在沙发上皱眉揉脖子的场景,配上大字“每天低头10小时?你的颈椎在求救!”,这就是典型的注意力抓取。
有人可能会纠结“激发兴趣”为什么不是第一步。其实Interest阶段是在对方已经停下脚步的基础上,进一步展示价值。比如刚才的按摩仪案例,引起注意后下一屏才会说:“3D仿人手揉捏技术,每天15分钟缓解僵硬”,这才是兴趣激发。如果把这两个顺序调换,先讲技术参数,可能用户根本没耐心看到这里。这就像卖煎饼果子的小摊,得先让路人闻到香味(Attention),才会凑过来看是怎么做的(Interest),接着馋到流口水(Desire),最后掏钱买(Action)。
How do well-designed prompts assist in information retrieval?
问题:设计良好的提示如何帮助信息检索?
A. Slowing search speed
A. 降低搜索速度
B. Increasing irrelevant results
B. 增加无关结果
C. Precise expression of query intent
C. 精准表达查询意图
D. Reducing result relevance
D. 降低结果相关性
答案:C
这题问的是好提示词怎么帮信息检索更准,正确答案是C选项“精准表达查询意图”。其实这就跟问路一个道理——你跟导航说“找个吃饭的地儿”,它可能给你推十公里外的火锅店;但如果你说“附近步行五分钟内评分4.5以上的湘菜馆”,结果立马精准十倍。好的提示词就是给AI装了个导航仪,告诉它“别瞎猜,按这个方向走”。
举个例子,你要查新冠疫苗副作用,如果直接输“疫苗 副作用”,出来的可能是三年前的论坛帖或者宠物疫苗内容。但加上提示词“2023年权威医学期刊发表的mRNA疫苗短期副作用临床研究”,检索系统立马会锁定专业数据库里的最新论文,过滤掉无效信息。这种精准度提升背后,其实是把模糊需求转成了带限定条件的明确指令,比如时间范围、内容类型、专业级别。
再比如企业用RAG系统查内部文档,光问“我们的财务制度”可能搜出五十个文件,但提示词里加上“2024年修订的员工差旅报销标准,PDF格式,第三章第四条款”,系统就会直奔目标段落,省得人工在几十页里翻找。这就像图书管理员找书,你说“找本讲历史的”和“找2020年出版的《明朝那些事儿》第六册”,效率天差地别。
How does prompt engineering improve machine translation?
问题:提示工程如何提升机器翻译质量?
A. Increasing model complexity
A. 增加模型复杂度
B. Reducing source-target language differences
B. 减少源语言与目标语言差异
C. Providing contextual prompts
C. 提供上下文提示
D. Enhancing training efficiency
D. 提高训练效率
答案:C
正确答案是C选项“提供上下文提示”,这题考的是翻译质量怎么靠提示词提升。举个真实案例:翻译“重阳节登高是传统习俗”,不加提示的话机器可能直译成“Climbing high on Chongyang Festival”,老外看了完全不懂。但提示词里补一句“Double Ninth Festival是中国的敬老节,需补充文化注释”,输出就会变成“Mountain hiking is a tradition during the Double Ninth Festival, a day to honor the elderly in Chinese culture.” 文化隔阂瞬间打通。
还有成语翻译更明显。“画蛇添足”直译成“draw legs on a snake”老外可能懵,但提示词要求“用英语等效谚语替换”,立马变成“gilding the lily”(给百合镀金),既保留比喻又传达“多此一举”的核心意思。这种操作等于给翻译AI塞了个文化词典,让它知道什么时候该直译、什么时候要意译。
在专业领域比如医学翻译,提示词还能救命。比如“阳性”在新冠报告里必须译成“positive”,但若没提示,AI可能翻成“sunny side up”(煎蛋的正面)。有个实验显示,加了“此处为核酸检测结果,用医学术语”的提示后,这类错误率从38%降到2%。这就像让翻译员提前看一遍专业词汇表,不至于闹出低级笑话。
What is the native output of the Transformer model?
问题:Transformer模型的原始输出形式是什么?
A. Images
A. 图像
B. Videos
B. 视频
C. Audio
C. 音频
D. Text
D. 文本
答案:D
选D选项“文本”是因为Transformer老本行就是处理文字。它内部运作像个超级文字处理器:输入“我爱吃苹果”,先拆成“我/爱/吃/苹果”四个词向量,每个词带位置编码(比如“我”是第一位,“苹果”是第四位)。然后自注意力机制开始工作——计算“爱”和“吃”的关系强度,再判断“苹果”指的是水果还是手机品牌。最后输出的是每个位置的下一个词概率,比如“苹果”后面可能接“汁”的概率80%,接“公司”的概率15%。
虽然现在能看到Transformer生成图片或视频,但那是后接其他模块的结果。好比做菜,Transformer本身只是炒好了一锅底料,要变成麻辣烫得加食材,要变成火锅得换锅具。比如DALL·E就是把Transformer的文本输出喂给图像生成器,但Transformer自己吐出来的始终是文字形式的向量数据。曾有工程师尝试直接输出二进制图像代码,结果全是一团乱码,证明它骨子里还是个文本处理专家。
Which factor does not drive AIGC development?
问题:以下哪项不是推动AIGC发展的因素?
A. More data and computing power
A. 更多数据和算力
B. Slow, meticulous craftsmanship
B. 缓慢精细的手工制作
C. Improved models
C. 改进的模型
D. Expanding application needs
D. 扩展的应用需求
答案:B
B选项“手工制作”明显拖后腿。AIGC的核心优势就是自动化流水线,比如训练GPT-3用了45TB文本数据,靠人工整理的话得几万人干十年。而实际应用里,短视频平台每天要生成百万条文案,手工写的话编辑团队早累趴了。有个电商案例,用AI批量生成商品描述后,人力成本降了七成,但要换成手工精细打磨,估计连百分之一产量都达不到。
反观推动因素,像“更多数据”直接决定模型智商——中文大模型一开始不如英文,就是因为语料少。后来各家拼命爬取论坛、电子书、专利库,现在都能写古诗了。而“改进模型”比如Transformer结构替代RNN,让生成长文本不再跑偏,之前RNN写五百字就可能忘记开头设定。至于“应用需求”,比如元宇宙需要实时生成3D场景描述,逼得AI绘图工具迭代速度翻倍。这些都不是手工能跟上的节奏,反而手工越精细,越跟不上AIGC的工业化生产需求。
本文中的涉及到的题目原文链接如下
原文链接:https://blog.csdn.net/l19889317684/article/details/147426626