【C++基本算法】背包问题——完全背包

7. 背包问题——完全背包

【模板】完全背包

题目链接:

【模板】完全背包

要点:

  • 完全背包核心逻辑:物品无限次选择,状态转移方程需从同一层转移(dp[i][j - v[i]]
  • 两类问题处理
    • 第一问:最大价值(常规完全背包)
    • 第二问:恰好装满背包时的最大价值(需特殊初始化,不可达状态标记为 -1
  • 空间优化关键
    • 完全背包遍历顺序为正序(与01背包逆序相反),确保同一物品可重复选

老师代码:

#include <iostream>
#include <string.h>
using namespace std;
const int N = 1010;
int n, V, v[N], w[N];
int dp[N][N];
int main()
{
    // 读⼊数据
    cin >> n >> V;
    for(int i = 1; i <= n; i++)
        cin >> v[i] >> w[i];
    
    // 搞定第⼀问
    for(int i = 1; i <= n; i++)
        for(int j = 0; j <= V; j++)
        {
            dp[i][j] = dp[i - 1][j];
            if(j >= v[i]) dp[i][j] = max(dp[i][j], dp[i][j - v[i]] + w[i]);
        }
    cout << dp[n][V] << endl;
    
    // 第⼆问
    memset(dp, 0, sizeof dp);
    for(int j = 1; j <= V; j++) dp[0][j] = -1;
    for(int i = 1; i <= n; i++)
        for(int j = 0; j <= V; j++)
        {
            dp[i][j] = dp[i - 1][j];
            if(j >= v[i] && dp[i][j - v[i]] != -1)
            dp[i][j] = max(dp[i][j], dp[i][j - v[i]] + w[i]);
        }
    cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;
    
    return 0;
}

空间优化:

#include <iostream>
#include <string.h>
using namespace std;
const int N = 1010;
int n, V, v[N], w[N];
int dp[N];
int main()
{
    // 读⼊数据
    cin >> n >> V;
    for(int i = 1; i <= n; i++)
    cin >> v[i] >> w[i];
    
    // 搞定第⼀问
    for(int i = 1; i <= n; i++)
        for(int j = v[i]; j <= V; j++)
            dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
    cout << dp[V] << endl;
    
    // 第⼆问
    memset(dp, 0, sizeof dp);
    for(int j = 1; j <= V; j++) dp[j] = -0x3f3f3f3f;//区别一
    for(int i = 1; i <= n; i++)
        for(int j = v[i]; j <= V; j++)
            dp[j] = max(dp[j], dp[j - v[i]] + w[i]);//区别二:没有if判断
    cout << (dp[V] < 0 ? 0 : dp[V]) << endl;
    
    return 0;
}

老师思路:

我们先解决第⼀问:

  1. 状态表⽰:dp[i] [j] 表⽰:从前 i 个物品中挑选,总体积不超过 j ,所有的选法中,能挑选出来的最⼤价值。(这⾥是和 01背包⼀样哒)

  2. 状态转移⽅程:线性 dp 状态转移⽅程分析⽅式,⼀般都是根据最后⼀步的状况,来分情况讨论。但是最后⼀个物品能选很多个,因此我们的需要分很多情况:

    • i. 选 0 个第 i 个物品:此时相当于就是去前 i - 1 个物品中挑选,总体积不超过 j 。此时最⼤价值为 dp[i - 1] [j]
    • ii. 选 1 个第 i 个物品:此时相当于就是去前 i - 1 个物品中挑选,总体积不超过 j -v[i] 。因为挑选了⼀个 i 物品,此时最⼤价值为 dp[i - 1] [j - v[i]] + w[i]
    • iii. 选 2 个第 i 个物品:此时相当于就是去前 i - 1 个物品中挑选,总体积不超过 j - 2 * v[i] 。因为挑选了两个 i 物品,此时最⼤价值为 dp[i - 1] [j - 2 * v[i]] + 2 * w[i]
    • iv. … 综上,我们的状态转移⽅程为:dp[i][j]=max(dp[i-1][j], dp[i-1][j-v[i]]+w[i], dp[i-1][j-2*v[i]]+2*w[i]...)
    • 当我们发现,计算⼀个状态的时候,需要⼀个循环才能搞定的时候,我们要想到去优化。优化的⽅向就是⽤⼀个或者两个状态来表⽰这⼀堆的状态,通常就是⽤数学的⽅式做⼀下等价替换。我们发现第⼆维是有规律的变化的,因此我们去看看 dp[i][j - v[i]] 这个状态:dp[i][j-v[i]]=max(dp[i-1][j-v[i]],dp[i-1][j-2*v[i]]+w[i],dp[i-1][j-3*v[i]]+2*w[i]...)。我们发现,把 dp[i][j - v[i]] 加上 w[i] 正好和 dp[i][j] 中除了第⼀项以外的全部⼀致,因此我们可以修改我们的状态转移⽅程为:dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])
  3. 初始化:我们多加⼀⾏,⽅便我们的初始化,此时仅需将第⼀⾏初始化为 0 即可。因为什么也不选,也能满⾜体积不⼩于 j 的情况,此时的价值为 0 。

  4. 填表顺序:根据状态转移⽅程,我们仅需从上往下填表即可

  5. 返回值:根据状态表⽰,返回· dp[n][V]

接下来解决第⼆问:

第⼆问仅需微调⼀下 dp 过程的五步即可。 因为有可能凑不⻬ j 体积的物品,因此我们把不合法的状态设置为 -1 。

  1. 状态表⽰:dp[i][j] 表⽰:从前 i 个物品中挑选,总体积正好等于 j ,所有的选法中,能挑选出来的最⼤价值。

  2. 状态转移⽅程:dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])

    但是在使⽤ dp[i][j - v[i]] 的时候,不仅要判断 j >= v[i] ,⼜要判断 dp[i][j - v[i]] 表⽰的情况是否存在,也就是 `dp[i][j - v[i]] != -1

  3. 初始化:我们多加⼀⾏,⽅便我们的初始化:i. 第⼀个格⼦为 0 ,因为正好能凑⻬体积为 0 的背包; ii. 但是第⼀⾏后⾯的格⼦都是 -1 ,因为没有物品,⽆法满⾜体积⼤于 0 的情况。

  4. 填表顺序:根据状态转移⽅程,我们仅需从上往下填表即可。

  5. 返回值:由于最后可能凑不成体积为 V 的情况,因此返回之前需要特判⼀下。

空间优化:背包问题基本上都是利⽤滚动数组来做空间上的优化:

  • i. 利⽤滚动数组优化;
  • ii. 直接在原始代码上修改。在完全背包问题中,优化的结果为:i. 仅需删掉所有的横坐标。

我的代码:

#include <iostream>
#include <string.h>
#include <vector>
using namespace std;

int main()
{
    int n, V;
    cin >> n >> V;
    vector<int> v(n), w(n);//原始数据
    vector<vector<int>> dp(n + 1, vector<int>(V + 1));//dp表
    for(int i = 0; i < n; i++)
        cin >> v[i] >> w[i];

    //回答第一问
    //初始化

    //填表
    for(int i = 1; i <= n; i++)
    {
        for(int j = 0; j <= V; j++)
        {
            dp[i][j] = dp[i - 1][j];
            if(j - v[i - 1] >= 0) dp[i][j] = max(dp[i][j], dp[i][j - v[i - 1]] + w[i - 1]);
        }
    }

    cout << dp[n][V] << endl;

    //回答第二问
    //初始化
    vector<vector<int>> dp1(n + 1, vector<int>(V + 1));//我不知道为什么memset用不了
    for(int j = 1; j <= V; j++) dp1[0][j] = -1;
    //填表
    for(int i = 1; i <= n; i++)
    {
        for(int j = 0; j <= V; j++)
        {
            dp1[i][j] = dp1[i - 1][j];
            if(j - v[i - 1] >= 0 && dp1[i][j - v[i - 1]] != -1) dp1[i][j] = max(dp1[i][j], dp1[i][j - v[i - 1]] + w[i - 1]);
        }
    }

    cout << (dp1[n][V] == -1 ? 0 : dp1[n][V]) << endl;

    return 0;
}

空间优化:

#include <iostream>
#include <string.h>
#include <vector>
using namespace std;

int main()
{
    int n, V;
    cin >> n >> V;
    vector<int> v(n), w(n);//原始数据
    vector<int> dp(V + 1);//dp表
    for(int i = 0; i < n; i++)
        cin >> v[i] >> w[i];

    //回答第一问
    //初始化

    //填表
    for(int i = 1; i <= n; i++)
        for(int j = 0; j <= V; j++)
            if(j - v[i - 1] >= 0) dp[j] = max(dp[j], dp[j - v[i - 1]] + w[i - 1]);

    cout << dp[V] << endl;

    //回答第二问
    //初始化
    vector<int> dp1(V + 1);
    for(int j = 1; j <= V; j++) dp1[j] = -1;
    //填表
    for(int i = 1; i <= n; i++)
        for(int j = 0; j <= V; j++)
            if(j - v[i - 1] >= 0 && dp1[j - v[i - 1]] != -1) dp1[j] = max(dp1[j], dp1[j - v[i - 1]] + w[i - 1]);

    cout << (dp1[V] == -1 ? 0 : dp1[V]) << endl;

    return 0;
}

我的思路:

在这里插入图片描述

对于第二问,思路其实是差不多的,在这里就简单叙述一下

  • 修改状态表示的含义:dp[i][j]表示从i位置之前的数中选体积刚好等于j的物品的所有选择方式的最大价值
  • 修改状态转移方程:就是多增加一个条件判断,因为体积刚好等于j的物品的所有选择方式可能是没有的(并不是说他就等于0,而是这个状态根本就不能用),所以我们需要一个新的状态标记一下(-1)如果dp1[i][j - v[i - 1]] != -1我们就不计算;
  • 修改初始化:因为体积刚好等于j的物品的所有选择方式可能是没有的,也就是dp[0][j]其中j属于 1~V(表示从 0 位置之前的数中选体积刚好等于 j 的物品的所有选择方式的最大价值,且 j 不为0),这种状态是没有的

对于空间优化:需要与01背包问题的空间优化进行区分

  • 填表顺序

    • 01背包的空间优化需要从后往前填表,因为填表时需要用到时上一个表的元素,不能把它先覆盖
    • 完全背包需要用到的是本次填表的上一个数据,而不是上一个表的数据,需要从左往右填表
  • 边界条件判断

我的笔记:

  • 我的代码之所以不能用memset是因为我的dp数组是一个vector类,并不是一个int类型的数组

  • 注意观察一下我的空间优化以及老师的空间优化的区别,这两个都是可以的

零钱兑换

题目链接:

零钱兑换

要点:

  • 问题转化:将硬币看作物品,金额看作背包容量,求恰好装满背包的最小物品数
  • 初始化技巧:不可达状态用极大值 0x3f3f3f3f 标记,避免干扰 min 操作
  • 状态转移dp[i][j] = min(dp[i-1][j], dp[i][j-coins[i]] + 1)

老师代码:

class Solution
{
public:
    int coinChange(vector<int>& coins, int amount)
    {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        const int INF = 0x3f3f3f3f;
        int n = coins.size();
        vector<vector<int>> dp(n + 1, vector<int>(amount + 1));
        
        for(int j = 1; j <= amount; j++) dp[0][j] = INF;
            for(int i = 1; i <= n; i++)
                for(int j = 0; j <= amount; j++)
                {
                    dp[i][j] = dp[i - 1][j];
                    if(j >= coins[i - 1])
                    dp[i][j] = min(dp[i][j], dp[i][j - coins[i - 1]] + 1);
                }
        return dp[n][amount] >= INF ? -1 : dp[n][amount];
    }
}

老师思路:

将问题「转化」成我们熟悉的题型。i. 在⼀些物品中「挑选」⼀些出来,然后在满⾜某个「限定条件」下,解决⼀些问题,⼤概率是「背包」模型;ii. 由于每⼀个物品都是⽆限多个的,因此是⼀个「完全背包」问题。接下来的分析就是基于「完全背包」的⽅式来的

我的代码:

错误一:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int m = coins.size();
        vector<vector<int>> dp(m + 1, vector<int>(amount + 1));

        //初始化
        for(int j = 1; j <= amount; j++) dp[0][j] = -1;

        //填表
        for(int i = 1; i <= m; i++)
        {
            for(int j = 0; j <= amount; j++)
            {
                dp[i][j] = dp[i - 1][j];
                if(j - coins[i - 1] >= 0 && dp[i][j - coins[i - 1]] != -1)
                    dp[i][j] = min(dp[i][j], dp[i][j - coins[i - 1]] + 1);
            }
        }
        return dp[m][amount];
    }
};

正确代码:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int m = coins.size();
        vector<vector<int>> dp(m + 1, vector<int>(amount + 1));

        //初始化
        for(int j = 1; j <= amount; j++) dp[0][j] = 0x3f3f3f3f;

        //填表
        for(int i = 1; i <= m; i++)
        {
            for(int j = 0; j <= amount; j++)
            {
                dp[i][j] = dp[i - 1][j];
                if(j - coins[i - 1] >= 0 && dp[i][j - coins[i - 1]] != 0x3f3f3f3f)
                    dp[i][j] = min(dp[i][j], dp[i][j - coins[i - 1]] + 1);
            }
        }
        
        return dp[m][amount] == 0x3f3f3f3f ? -1 : dp[m][amount];

    }
};

空间优化:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int m = coins.size();
        vector<int> dp(amount + 1);

        //初始化
        for(int j = 1; j <= amount; j++) dp[j] = 0x3f3f3f3f;

        //填表
        for(int i = 1; i <= m; i++)
        {
            for(int j = 0; j <= amount; j++)
            {
                if(j - coins[i - 1] >= 0 && dp[j - coins[i - 1]] != 0x3f3f3f3f)
                    dp[j] = min(dp[j], dp[j - coins[i - 1]] + 1);
            }
        }
        
        return dp[amount] == 0x3f3f3f3f ? -1 : dp[amount];

    }
};

我的思路:

  • 初始错误:用 -1 标记不可达状态,导致 min 操作无法正确处理
  • 修正后:用 0x3f3f3f3f 标记不可达,最终结果判断是否为该值
  • 空间优化时,需注意一维 dp 的遍历顺序和条件判断

我的笔记:

  • 使用 unsigned long long 可避免整数溢出(LeetCode 特定用例)
零钱兑换∥

题目链接:

零钱兑换∥

要点:

  • 组合数问题:不同顺序视为同一种方案(与排列数区分)
  • 状态转移dp[j] += dp[j - coins[i]],从前往后遍历
  • 初始化dp[0] = 1(空背包为一种方案)

老师代码:

class Solution
{
public:
    int change(int amount, vector<int>& coins)
    {
        vector<unsigned long long> dp(amount + 1); // 建表
        dp[0] = 1; // 初始化
        for(auto x : coins) // 拿出物品
            for(int j = x; j <= amount; j++) // 注意遍历顺序和起始终⽌位置
                dp[j] += dp[j - x];
        return dp[amount];
    }
};

老师思路:

先将问题「转化」成我们熟悉的题型。i. 在⼀些物品中「挑选」⼀些出来,然后在满⾜某个「限定条件」下,解决⼀些问题,⼤概率是背包模型;ii. 由于每⼀个物品都是⽆限多个的,因此是⼀个「完全背包」问题。接下来的分析就是基于「完全背包」的⽅式来的

我的代码:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int m = coins.size();

        vector<vector<unsigned long long>> dp(m + 1, vector<unsigned long long>(amount + 1));

        dp[0][0] = 1;

        for(int i = 1; i <= m; i++)
        {
            for(int j = 0; j <= amount; j++)
            {
                dp[i][j] = dp[i - 1][j];
                if(j - coins[i - 1] >= 0)
                    dp[i][j] += dp[i][j - coins[i - 1]];
            }
        }

        return dp[m][amount];
    }
};

空间优化:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int m = coins.size();

        vector<unsigned long long> dp(amount + 1);

        dp[0] = 1;

        for(int i = 1; i <= m; i++)
        {
            for(int j = 0; j <= amount; j++)
            {
                if(j - coins[i - 1] >= 0)
                    dp[j] += dp[j - coins[i - 1]];
            }
        }

        return dp[amount];
    }
};

我的思路:

我的笔记:

  • 逆天题目,现在老师的代码都通不过,需要用unsigned long long 类型才能通过,现在在博客上的是可以通过的代码
完全平方数

题目链接:

完全平方数

要点:

  • 问题转化:将完全平方数看作物品,n 看作背包容量,求恰好装满的最小物品数
  • 数学优化:只需遍历 j * j <= i 的平方数
  • 状态转移dp[i] = min(dp[i], dp[i - j*j] + 1)

老师代码:

class Solution
{
public:
    int numSquares(int n)
    {
        vector<int> dp(n + 1);
        dp[1] = 1; // 初始化
        for(int i = 2; i <= n; i++) // 枚举每个数
        {
            dp[i] = 1 + dp[i - 1]; // ⾄少等于 1 + dp[i - 1]
            for(int j = 2; j * j <= i; j++) // ⽤⼩于 i 的完全平⽅数划分区间
                dp[i] = min(dp[i], dp[i - j * j] + 1); // 拿到所有划分区间内的最⼩值
        }
        // 返回结果
        return dp[n];
    }
}

老师思路:

这⾥给出⼀个⽤「拆分出相同⼦问题」的⽅式,定义⼀个状态表⽰。(⽤「完全背包」⽅式的解法就仿照之前的分析模式就好啦~~) 为了叙述⽅便,把和为 n 的完全平⽅数的最少数量简称为「最⼩数量」

我的代码:

class Solution {
public:
    int numSquares(int n) {
        int m = (int)sqrt(n) + 1;

        vector<vector<int>> dp(m + 1, vector<int>(n + 1));


        for(int j = 1; j <= n; j++) dp[0][j] = 0x3f3f3f3f;

        for(int i = 1; i <= m; i++)
        {
            for(int j = 0; j <= n; j++)
            {
                dp[i][j] = dp[i - 1][j];
                if(j - i * i >= 0) dp[i][j] = min(dp[i][j], dp[i][j - i * i] + 1);
            }
        }

        return dp[m][n];
    }
};

我的思路:

我的笔记:

问题解决注意事项

C++语法

  1. 容器初始化
    • vector 初始化用构造函数(如 vector<int> dp(n+1, 0x3f3f3f3f)),避免手动循环
    • 二维 vector 初始化:vector<vector<int>> dp(n+1, vector<int>(m+1, 0))
  2. 数值溢出:大数问题使用 unsigned long longINF = 0x3f3f3f3f 标记非法状态
  3. 遍历顺序:完全背包正序遍历,01背包逆序遍历

算法思路

  1. 状态定义
    • 明确 dp[i][j] 含义(如“前 i 个物品装满容量 j 的方案数”)
    • 区分“恰好装满”与“不超过容量”的初始化差异
  2. 转移方程设计
    • 完全背包:dp[j] = max(dp[j], dp[j - v[i]] + w[i])(正序)
    • 组合数问题:先物品后容量,避免重复计数
  3. 剪枝优化
    • 完全平方数问题中,内层循环仅需遍历到 sqrt(i)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值