08 python迭代器生成器

首先理解几个概念,迭代、可迭代对象、迭代器。

1. 迭代器
  • 迭代(Iteration):按顺序访问线性结构中的每一项
  • 可迭代对象(Iterable):定义了__iter__方法的对象即为可迭代对象。一般可作用于for循环的对象均为可迭代对象。
  • 判断对象是否可迭代:from collections import Iterable isinstance(obj, Iterable)
# 可迭代对象Iterable
num = [10, 20, 30]

from collections import Iterable

isinstance(num, Iterable)
 
# 执行结果 
True 
  • 迭代器(Iterator):具有__iter__方法(返回一个具有__next__方法的对象)、__next__()方法的对象即为迭代器。是一个不断生成下一个值的惰性计算序列。占用空间较小。
  • 判断对象是否为迭代器:from collections import Iterator isinstance(obj, Iterator)
# 自定义实现可迭代对象:内部定义了__iter__方法
from collections import Iterable

class Classmate(object):
    
    def __iter__(self):
        pass
    
classmate = Classmate()
isinstance(classmate, Iterable)

# 执行结果 
True 
  • 可使用iter()函数将一个可迭代对象转变为迭代器
# 可迭代对象转换为迭代器
num_list = [1, 2, 3, 4]

num_iterator = iter(num_list)
print(type(num_iterator))

# 执行结果 
<class 'list_iterator'> 
  • for循环迭代的后台机制:

    • 判断对象是否可迭代
    • 若为可迭代对象,利用iter()函数生成一个迭代器对象(自动调用对象的__iter__方法得到一个返回值:迭代器)
    • 利用next()函数_next_()方法不断访问对象的下一个值
    • 内部自动处理Stopiteration异常,出现该异常自动停止迭代。
  • 自定义实现迭代器:斐波那契数列

# 自定义实现迭代器:斐波那契数列
from collections import Iterator

class Fib(object):
    
    def __init__(self, num):
        self.num = num
        self.current_num = 0
        self.a = 0
        self.b = 1
        
    def __iter__(self):
        return self
    
    def __next__(self):
        if self.current_num < self.num:
            self.a, self.b = self.b, self.a + self.b
            self.current_num += 1
            return self.a
        else:
            raise StopIteration
            
fib = Fib(10)
print(isinstance(fib, Iterator))

for num in fib:
    print(num)
2. 生成器
  • 生成器均为迭代器

  • 生成器提供延迟操作:需要的时候生成结果,而不是立即产生结果(内存占用较少)

  • 生成器表达式:类似于列表推导式,但按需产生结果的一个对象,而不是一次构建整个结果列表

# 生成器表达式
squares = (x for x in range(3))
print(type(squares))

# print(next(squares))
# print(next(squares))
# print(next(squares))
# print(next(squares))  # 此处会抛出Stopiteration异常

for x in squares:  # for循环会自动处理Stopiteration异常
    print(x)
  • 生成器函数:使用yield语句而不是return语句返回结果,yield语句执行一次返回一个结果
# 生成器函数
def test(num):
    for x in range(num):
        yield x
        
num_iterator = test(10)
print(type(num_iterator))
print(list(num_iterator))

# 执行结果 
<class 'generator'> 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
3. 总结
  • 迭代器是一个惰性计算序列,占用空间较小。生成器本身也为迭代器。与列表区别,列表存储的是数据列表,生成器存储的是生成元素的方法。

  • 使用了yield关键字的函数不再是函数,而是生成器。yield关键字有两点作用:

    • 保存当前运行状态(断点),然后暂停执行,即将生成器(函数)挂起
    • 将yield关键字后面表达式的值作为返回值返回,此时可以理解为起到了return的作用
  • 可以使用next()函数让生成器从断点处继续执行,即唤醒生成器(函数)

  • Python3中的生成器可以使用return返回最终运行的返回值,而Python2中的生成器不允许使用return返回一个返回值(即可以使用return从生成器中退出,但return后不能有任何表达式)。

附参考文章:https://www.zhihu.com/question/24807364

springboot100基于Springboot+Vue精准扶贫管理系统-毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值