AI for everyone是一门非技术性的课程,你将比世界上大多数CEO拥有更多的知识。至少Andrew Ng是这么说的。所以让我们简短地找出他想要表达的意思。
到2030年,人工智能将创造13万亿美元的价值,主要用于零售业,其次是旅游业和汽车业。
人工智能大致分为ANI(人工狭义智能)和AGI(人工通用智能)。随着ANI的进步,人们错误地开始相信他们在AGI取得了进步。
不要在收集数据的IT基础设施上花费太多。尽可能早的将数据反馈给AI团队,让他们知道收集到的数据是否有用,并能改变数据收集策略。也不是说数据越多,价值越大。
机器学习就是学习A到B的映射,其中A是输入,B是输出标签,而数据科学更多的是从数据中提取见解和结论。机器学习的输出是软件,而数据科学的输出是幻灯片。
深度学习是神经网络的品牌名称,它只不过是一个大的数学方程。神经网络受到大脑的启发,但其内部功能几乎与大脑的实际工作方式无关。
就像:
购物中心+互联网=互联网公司
同样地:
任意公司+深度学习= AI公司
任何问题,一个人可以用一秒钟的思考做什么,并为其提供了大量的标签数据,都可以通过有监督的ML自动化。
人工智能目前无法理解或理解手势。人工智能无法通过少量的数据来学习复杂的任务。
对于机器学习:
收集数据,训练模型和部署模型。
对于数据科学:
收集数据,分析数据,提出修改建议。
例如:在招聘中,数据科学通过分析数据来帮助我们优化招聘过程。而机器学习可以帮助自动筛选简历。
选择对你的业务既可行又有价值的项目。在决定一个项目时,人工智能专家和领域专家应该一起工作。
自动化任务而不是作业,需要了解业务中的痛点。
即使没有大数据,你也可以取得进步
除了商业上的勤奋和技术上的勤奋,还要考虑道德上的勤奋,你正在建设的项目是否会给人类带来一些好处。
对于AI团队,在测试集上指定您的统计验收标准。
角色:
软件工程师:编写像函数/子程序一样的软件代码。
机器学习工程师:负责创建模型。
机器学习科学家:负责技术的扩展
应用ML科学家:介于ML工程师和研究人员之间的角色。
数据科学家:检查数据并提供驱动业务决策的见解
数据工程师:确保数据以一种安全和成本有效的方式容易访问
人工智能产品经理:要构建什么,什么是有价值的和可行的
执行相关的AI试点项目可设置6-12个月的跨度。
创建一个中心人工智能团队,并在CAIO(首席人工智能官)的领导下将其分散到多个业务部门。最初,CEO应该向AI部门提供资金,而不是由BU提供资金,在初始投资之后,AI团队必须展示出为BU创造的价值。
商业Leader必须明白人工智能能为他们的企业做什么。人工智能团队Leader应该设定项目方向并监控资源。在公司内部,人工智能工程师应该接受培训,从事AI pipeline方面的工作。
CLO应该知道如何策划内容,而不是创建内容。
只有在执行了一两个项目之后才去建立一个AI策略,否则它将成为一个学术策略而不是实际策略。不同的公司有不同的战略。
一个好的产品以更少的数据开始拥有用户。随着时间的推移,这些用户将生成可用于改进产品等的数据。
战略数据采集。不要为了收集有用的数据而将产品货币化。应该提供机器学习工程师等新职位。
将工程人才与业务/销售人才配对,寻找可行且有价值的项目。
不要期望人工智能项目第一次就能工作,也不要在人工智能项目中强制执行传统的规划流程。
结交朋友学习人工智能,集体讨论项目并寻找导师!
对超级智能即将来临的人工智能也不要过于乐观。人工智能冬天即将来临,人工智能也不会过于悲观!在中间的某个地方!
AI的可解释性很难。
AI可能会因偏见的数据而变得偏颇。
AI系统对Adversarial Attacks开放。未来公司可能会与对抗性攻击者展开激战。
美国和中国在人工智能领域处于领先地位,但这项技术仍然不成熟,让其他国家在竞争中享有同等优势。
根据麦肯锡公司的报告,到2030年
由AI取代的工作岗位:400-800万个;AI创造工作岗位:555-890万。
谢谢Andrew Ng!总体而言,我喜欢这门课程,我希望人力资源专业人士可以有更多人了解像tensorflow,keras等工具。但是再一次,很高兴看到Andrew Ng回归行动。
参考资料:
- https://towardsdatascience.com/ai-for-everyone-what-andrew-ng-want-to-convey-with-this-non-technical-course-in-30-points-bedaea57c81b
关于作者
AI算法之心是一个介绍Python、PySpark、机器学习、自然语言处理、深度学习、算法竞赛的平台。不管你是刚入门的小白,还是资深的算法大佬,欢迎扫一扫下方的二维码与我们在AI的领域中一起学习成长!
机器学习初学者
黄海广博士创建的公众号,黄海广博士个人知乎粉丝21000+,github排名全球前120名(30000+)。本公众号致力于人工智能方向的科普性文章,为初学者提供学习路线和基础资料。原创作品有:吴恩达机器学习个人笔记、吴恩达深度学习笔记等。
往期精彩回顾