【机器学习基础】算法工程师必备的机器学习--EM



『运筹OR帷幄』原创

作者:华校专

作者信息:

华校专,曾任阿里巴巴资深算法工程师、智易科技首席算法研究员,现任腾讯高级研究员,《Python 大战机器学习》的作者。

编者按:

算法工程师必备系列更新啦!继上次推出了算法工程师必备的贝叶斯分类器后,小编继续整理了必要的机器学习知识,全部以干货的内容呈现,哪里不会学哪里,老板再也不用担心你的基础问题!本章介绍EM算法。

  1. 如果概率模型的变量都是观测变量,则给定数据之后,可以直接用极大似然估计法或者贝叶斯估计法来估计模型参数。但是当模型含有隐变量时,就不能简单的使用这些估计方法。此时需要使用EM 算法。

  • EM 算法是一种迭代算法。

  • EM 算法专门用于含有隐变量的概率模型参数的极大似然估计,或者极大后验概率估计。

  • EM算法的每次迭代由两步组成:

    • E步求期望。

    • M步求极大。所以EM算法也称为期望极大算法。

    1 示例

    1.1 身高抽样问题

    1. 假设学校所有学生中,男生身高服从正态分布 , 女生身高服从正态分布 。现在随机抽取200名学生,得到这些学生的身高 ,求参数 的估计。

    2. 定义隐变量为 ,其取值为 ,分别表示男生、女生

      (1) 如果隐变量是已知的,即已知每个学生是男生还是女生 ,则问题很好解决:

      (1.1) 统计所有男生的身高的均值和方差,得到

      其中 表示满足 构成的集合。 分别表示平均值和方差。

      (1.2) 统计所有女生的身高的均值和方差,得到

      其中 表示满足 构成的集合。 分别表示平均值和方差。

      (2) 如果已知参数 ,则任意给出一个学生的身高 ,可以知道该学生分别为男生/女生的概率。

      则有:

      因此也就知道该学生更可能为男生,还是更可能为女生。

      因此:参数 学生是男生/女生,这两个问题是相互依赖,相互纠缠的。

    3. 为解决该问题,通常采取下面步骤:

      (1) 先假定参数的初始值:

      (2) 迭代 :

      (2.1) 根据 来计算每个学生更可能是属于男生,还是属于女生。这一步为E 步(Expectation),用于计算隐变量的后验分布

      (2.2) 根据上一步的划分,统计所有男生的身高的均值和方差,得到 ;统计所有女生的身高的均值和方差,得到 。这一步为 M 步(Maximization ),用于通过最大似然函数求解正态分布的参数。

      (2.3) 当前后两次迭代的参数变化不大时,迭代终止。

    1.2 三硬币模型

    1. 已知三枚硬币 ABC ,这些硬币正面出现的概率分别为 。进行如下试验:

    • 先投掷硬币 A,若是正面则选硬币 B;若是反面则选硬币 C

    • 然后投掷被选出来的硬币,投掷的结果如果是正面则记作 1;投掷的结果如果是反面则记作0

    • 独立重复地 次试验,观测结果为:1,1,0,1,0,...0,1。现在只能观测到投掷硬币的结果,无法观测投掷硬币的过程,求估计三硬币正面出现的概率。

  • 设:

    注意:随机变量 的数据可以观测,随机变量 的数据不可观测

    • 随机变量 是观测变量,表示一次试验观察到的结果,取值为 1 或者0

    • 随机变量 是隐变量,表示未观测到的投掷A硬币的结果,取值为 1 或者 0

    • 是模型参数 则:

  • 将观测数据表示为 ,未观测数据表示为 。由于每次试验之间都是独立的,则有:

  • 考虑求模型参数 的极大似然估计,即:

    这个问题没有解析解,只有通过迭代的方法求解,EM算法就是可以用于求解该问题的一种迭代算法。

  • EM算法求解:首先选取参数的初值,记作 ,然后通过下面的步骤迭代计算参数的估计值,直到收敛为止:设第 次迭代参数的估计值为: , 则EM算法的第 次迭代如下:

    • 第一个式子:通过后验概率 估计值的均值作为先验概率 的估计。

    • 第二个式子:通过条件概率 的估计来求解先验概率 的估计。

    • 第三个式子:通过条件概率 的估计来求解先验概率 的估计。

    • E步:计算模型在参数 下,观测数据 来自于投掷硬币 B 的概率:

      它其实就是 ,即:已知观测变量 的条件下,观测数据 来自于投掷硬币 B 的概率。

    • M 步:计算模型参数的新估计值:

  • EM 算法的解释:

    • 初始化:随机选择三枚硬币 ABC 正面出现的概率 的初始值

    • E 步:在已知概率 的情况下,求出每个观测数据 是来自于投掷硬币 B 的概率。即: 。于是对于 次实验,就知道哪些观测数据是由硬币 B 产生,哪些是由硬币 C 产生。

    • M 步:在已知哪些观测数据是由硬币 B 产生,哪些是由硬币 C 产生的情况下:

      (1) 就等于硬币 B 产生的次数的频率。

      (2) 就等于硬币B 产生的数据中,正面向上的频率。

      (3) 就等于硬币 C 产生的数据中,正面向上的频率。

    2 EM算法原理

    2.1 观测变量和隐变量

    1. 表示观测随机变量, 表示对应的数据序列;令 表示隐随机变量, 表示对应的数据序列。 连在一起称作完全数据,观测数据 又称作不完全数据。

    2. 假设给定观测随机变量 ,其概率分布为 ,其中 是需要估计的模型参数,则不完全数据 的似然函数是 , 对数似然函数为 。假定 的联合概率分布是 ,完全数据的对数似然函数是 ,则根据每次观测之间相互独立,有:

    3. 由于 发生,根据最大似然估计,则需要求解对数似然函数:

      的极大值。其中 表示对所有可能的Z 求和,因为边缘分布 。该问题的困难在于:该目标函数包含了未观测数据的的分布的积分和对数。

    2.2 算法

    2.2.1 原理

    1. EM 算法通过迭代逐步近似极大化 。假设在第 次迭代后, 的估计值为: 。则希望 新的估计值能够使得 增加,即: 。为此考虑两者的差:

      这里 已知,所以 可以直接计算得出。

    2. Jensen 不等式:如果 是凸函数,x 为随机变量,则有:

    • 如果 是严格凸函数,当且仅当 是常量时,等号成立。

    • 满足 时,将 视作概率分布。设随机变量 满足概率分布 ,则有:

  • 考虑到条件概率的性质,则有 。因此有:

    等号成立时,需要满足条件:

    其中 为随机变量 的取值个数。

  • 则有: ,因此 的一个下界。

    • 任何可以使得 增大的 ,也可以使 增大。为了使得 尽可能增大,则选择使得 取极大值的

    • 根据定义有: 。因为此时有:

  • 求极大值:

    其中:

    无关,因此省略。
  • 2.2.2 算法

    1. EM 算法:

      联合分布和条件分布的形式已知(比如说高斯分布等),但是参数未知(比如均值、方差)

    • 输出:模型参数

    • 算法步骤:

      (1) 选择参数的初值 ,开始迭代。

      (2) E步:记 为第 次迭代参数 的估计值,在第 步迭代的 E 步,计算:

      其中

      表示:对于观测点 关于后验概率 的期望。

      (3) M步:求使得 最大化的 ,确定 次迭代的参数的估计值 $\theta^{(i+1)}

      (4) 重复上面两步,直到收敛。

    • 输入:

      (1) 观测变量数据

      (2) 联合分布 ,以及条件分布

  • 通常收敛的条件是:给定较小的正数 ,满足: 或者

  • 是算法的核心,称作 函数。其中:

    • 第一个符号表示要极大化的参数(未知量)。

    • 第二个符号表示参数的当前估计值(已知量)。

  • EM算法的直观理解:EM算法的目标是最大化对数似然函数

    • 直接求解这个目标是有问题的。因为要求解该目标,首先要得到未观测数据的分布 。如:身高抽样问题中,已知身高,需要知道该身高对应的是男生还是女生。但是未观测数据的分布就是待求目标参数 的解的函数。这是一个“鸡生蛋-蛋生鸡” 的问题。

    • EM算法试图多次猜测这个未观测数据的分布 。每一轮迭代都猜测一个参数值 ,该参数值都对应着一个未观测数据的分布 。如:已知身高分布的条件下,男生/女生的分布。

    • 然后通过最大化某个变量来求解参数值。这个变量就是 变量,它是真实的似然函数的下界 。
      (1) 如果猜测正确,则 就是真实的似然函数。(2) 如果猜测不正确,则 就是真实似然函数的一个下界。

  • 隐变量估计问题也可以通过梯度下降法等算法求解,但由于求和的项数随着隐变量的数目以指数级上升,因此代价太大。

    • EM算法可以视作一个非梯度优化算法。

    • 无论是梯度下降法,还是EM 算法,都容易陷入局部极小值。

    2.2.3 收敛性定理

    1. 定理一:设 为观测数据的似然函数, EM算法得到的参数估计序列, 为对应的似然函数序列,其中 。则: 是单调递增的,即:

    2. 定理二:设 为观测数据的对数似然函数, EM算法得到的参数估计序列, 为对应的对数似然函数序列,其中

      关于“满足一定条件”:大多数条件下其实都是满足的。

    • 如果 有上界,则 会收敛到某一个值

    • 在函数 满足一定条件下,由 EM 算法得到的参数估计序列 的收敛值 的稳定点。

  • 定理二只能保证参数估计序列收敛到对数似然函数序列的稳定点 ,不能保证收敛到极大值点。

  • EM算法的收敛性包含两重意义:

    • 关于对数似然函数序列 的收敛。

    • 关于参数估计序列 的收敛。前者并不蕴含后者。

  • 实际应用中,EM 算法的参数的初值选择非常重要。

    • 参数的初始值可以任意选择,但是 EM 算法对初值是敏感的,选择不同的初始值可能得到不同的参数估计值。

    • 常用的办法是从几个不同的初值中进行迭代,然后对得到的各个估计值加以比较,从中选择最好的(对数似然函数最大的那个)。

  • EM 算法可以保证收敛到一个稳定点,不能保证得到全局最优点。其优点在于:简单性、普适性。

  • 3 EM算法与高斯混合模型

    3.1 高斯混合模型

    1. 高斯混合模型(Gaussian$ mixture model,GMM):指的是具有下列形式的概率分布模型:

      其中 是系数,满足 :

    • 是高斯分布密度函数,称作第 个分模型,

  • 如果用其他的概率分布密度函数代替上式中的高斯分布密度函数,则称为一般混合模型。

  • 3.2 参数估计

    1. 假设观察数据

      由高斯混合模型 生成,其中 可以通过EM算法估计高斯混合模型的参数
    2. 可以设想观察数据 是这样产生的:

    • 首先以概率 选择第 个分模型

    • 然后以第 个分模型的概率分布 生成观察数据 。 这样,观察数据 是已知的,观测数据 来自哪个分模型是未知的。 对观察变量 ,定义隐变量 ,其中

  • 完全数据的对数似然函数为:

    其对数为:

    后验概率为:

    即:

    函数为:

    求极大值:

    根据偏导数为 0,以及

    得到:

    (1)

    其中:

    其物理意义为:所有的观测数据 中,产生自第 个分模型的观测数据的数量。

    (2)

    其中:

    其物理意义为:所有的观测数据 中,产生自第 个分模型的观测数据的总和。

    (3)

    其中:

    其物理意义为:所有的观测数据 中,产生自第 个分模型的观测数据,偏离第 个模型的均值( )的平方和。

  • 高斯混合模型参数估计的EM算法:

    • 输入:

      (1) 观察数据