听说GNN大有可为,从这篇开始学以致用

作者:十方

说到GNN,各位炼丹师会想到哪些算法呢?不管想到哪些算法,我们真正用到过哪些呢?确实我们可能都看过GNN相关论文,但是还是缺乏实战经验的.特别是对于推荐系统而言,我们又该如何应用这些模型呢?下面我们就从DeepWalk这篇论文开始,先讲原理,再讲实战,最后讲应用.

GNN相关背景知识

GNN的本质,是要学习网络中每个节点的表达的,这些潜在的表达对图中每个节点的“社交”关系进行了编码,把离散值的节点编码成稠密向量,后续可用于分类回归,或者作为下游任务的特征.Deepwalk充分利用了随机游走提取的“句子”,去学习句子中每个单词的表达.Deepwalk原文就提到了在数据稀疏的情况下可以把F1-scores提升10%,在一些实验中,能够用更少的训练数据获得了更好的效果.看下图的例子:

Deepwalk

问题定义:先把问题定义为给社交网络中的每个节点进行分类,图可以表达为G=<V,E>,V就是图上所有节点,E是所有边.有一部分有label的数据GL=(V,E,X,Y),X就是节点的特征,Y就是分类的label.在传统机器学习算法中,我们都是直接学习(X,Y),并没有充分利用节点间的依赖关系.Deepwalk可以捕捉图上的拓扑关系,通过无监督方法学习每个节点的特征,学到的图特征和标签的分布是相互独立的.

随机游走:选定一个根节点,“随机”走出一条路径,基于相邻的节点必然相似,我们就可以用这种策略去挖掘网络的社群信息.随机游走很方便并行,可以同时提取一张图上各个部分的信息.即使图有小的改动,这些路径也不需要重新计算.和word的出现频率类似,通过随机游走得到的节点访问频率都符合幂律分布,所以我们就可以用NLP相关方法对随机游走结果做相似处理,如下图所示:

所以在随机游走后,我们只需要通过下公式,学习节点向量即可:

该公式就是skip-gram,通过某个节点学习它左右的节点.我们都知道skip-gram用于文本时的语料库就是一个个句子,现在我们提取图的句子.如下所示:

算法很简单,把所有节点顺序打乱(加速收敛),然后遍历这些节点随机游走出序列,再通过skipgram算法去拟合每个节点的向量.如此反复.注:这里的随机是均匀分布去随机.当然有些图会有些“副产物”,比如用户浏览网页的顺序,可以直接输入到模型.

接下来我们看下deepwalks的核心代码:

# 代码来源 
# https://github.com/phanein/deepwalk
# Random walk
with open(f, 'w') as fout:
  for walk in graph.build_deepwalk_corpus_iter(G=G, # 图
                                               num_paths=num_paths, # 路径数
                                               path_length=path_length, # 路径长度
                                               alpha=alpha, #
                                               rand=rand): #
    fout.write(u"{}\n".format(u" ".join(v for v in walk)))


class Graph(defaultdict):
  """
  Efficient basic implementation of nx
  这里我们看到,
  该类继承defaultdict,
  图其实可以简单的表示为dict,
  key为节点,value为与之相连的节点
  """  
  def __init__(self):
    super(Graph, self).__init__(list)


  def nodes(self):
    return self.keys()


  def adjacency_iter(self):
    return self.iteritems()


  def subgraph(self, nodes={}):
    # 提取子图
    subgraph = Graph()
    
    for n in nodes:
      if n in self:
        subgraph[n] = [x for x in self[n] if x in nodes]
        
    return subgraph


  def make_undirected(self):
    #因为是无向图,所以v in self[u]并且 u in self[v]
    t0 = time()


    for v in list(self):
      for other in self[v]:
        if v != other:
          self[other].append(v)
    
    t1 = time()
    logger.info('make_directed: added missing edges {}s'.format(t1-t0))


    self.make_consistent()
    return self


  def make_consistent(self):
    # 去重
    t0 = time()
    for k in iterkeys(self):
      self[k] = list(sorted(set(self[k])))
    
    t1 = time()
    logger.info('make_consistent: made consistent in {}s'.format(t1-t0))


    self.remove_self_loops()


    return self


  def remove_self_loops(self):
    # 自已不会与自己有连接
    removed = 0
    t0 = time()


    for x in self:
      if x in self[x]: 
        self[x].remove(x)
        removed += 1
    
    t1 = time()


    logger.info('remove_self_loops: removed {} loops in {}s'.format(removed, (t1-t0)))
    return self


  def check_self_loops(self):
    for x in self:
      for y in self[x]:
        if x == y:
          return True
    
    return False


  def has_edge(self, v1, v2):
    # 两个节点是否有边
    if v2 in self[v1] or v1 in self[v2]:
      return True
    return False


  def degree(self, nodes=None):
    # 节点的度数
    if isinstance(nodes, Iterable):
      return {v:len(self[v]) for v in nodes}
    else:
      return len(self[nodes])


  def order(self):
    "Returns the number of nodes in the graph"
    return len(self)    


  def number_of_edges(self):
    # 图中边的数量
    "Returns the number of nodes in the graph"
    return sum([self.degree(x) for x in self.keys()])/2


  def number_of_nodes(self):
    # 图中结点数量
    "Returns the number of nodes in the graph"
    return self.order()


  # 核心代码
  def random_walk(self, path_length, alpha=0, rand=random.Random(), start=None):
    """ Returns a truncated random walk.
        path_length: Length of the random walk.
        alpha: probability of restarts.
        start: the start node of the random walk.
    """
    G = self
    if start:
      path = [start]
    else:
      # Sampling is uniform w.r.t V, and not w.r.t E
      path = [rand.choice(list(G.keys()))]


    while len(path) < path_length:
      cur = path[-1]
      if len(G[cur]) > 0:
        if rand.random() >= alpha:
          path.append(rand.choice(G[cur])) # 相邻节点随机选
        else:
          path.append(path[0]) # 有一定概率选择回到起点
      else:
        break
    return [str(node) for node in path]


# TODO add build_walks in here


def build_deepwalk_corpus(G, num_paths, path_length, alpha=0,
                      rand=random.Random(0)):
  walks = []


  nodes = list(G.nodes())
  # 这里和上面论文算法流程对应
  for cnt in range(num_paths): # 外循环,相当于要迭代多少epoch
    rand.shuffle(nodes) # 打乱nodes顺序,加速收敛
    for node in nodes: # 每个node都会产生一条路径
      walks.append(G.random_walk(path_length, rand=rand, alpha=alpha, start=node))
  
  return walks


def build_deepwalk_corpus_iter(G, num_paths, path_length, alpha=0,
                      rand=random.Random(0)):
  # 流式处理用
  walks = []


  nodes = list(G.nodes())


  for cnt in range(num_paths):
    rand.shuffle(nodes)
    for node in nodes:
      yield G.random_walk(path_length, rand=rand, alpha=alpha, start=node)




def clique(size):
    return from_adjlist(permutations(range(1,size+1)))
# http://stackoverflow.com/questions/312443/how-do-you-split-a-list-into-evenly-sized-chunks-in-python
def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)


def parse_adjacencylist(f):
  adjlist = []
  for l in f:
    if l and l[0] != "#":
      introw = [int(x) for x in l.strip().split()]
      row = [introw[0]]
      row.extend(set(sorted(introw[1:])))
      adjlist.extend([row])
  
  return adjlist


def parse_adjacencylist_unchecked(f):
  adjlist = []
  for l in f:
    if l and l[0] != "#":
      adjlist.extend([[int(x) for x in l.strip().split()]])
  
  return adjlist


def load_adjacencylist(file_, undirected=False, chunksize=10000, unchecked=True):


  if unchecked:
    parse_func = parse_adjacencylist_unchecked
    convert_func = from_adjlist_unchecked
  else:
    parse_func = parse_adjacencylist
    convert_func = from_adjlist


  adjlist = []


  t0 = time()
  
  total = 0 
  with open(file_) as f:
    for idx, adj_chunk in enumerate(map(parse_func, grouper(int(chunksize), f))):
      adjlist.extend(adj_chunk)
      total += len(adj_chunk)
  
  t1 = time()


  logger.info('Parsed {} edges with {} chunks in {}s'.format(total, idx, t1-t0))


  t0 = time()
  G = convert_func(adjlist)
  t1 = time()


  logger.info('Converted edges to graph in {}s'.format(t1-t0))


  if undirected:
    t0 = time()
    G = G.make_undirected()
    t1 = time()
    logger.info('Made graph undirected in {}s'.format(t1-t0))


  return G 




def load_edgelist(file_, undirected=True):
  G = Graph()
  with open(file_) as f:
    for l in f:
      x, y = l.strip().split()[:2]
      x = int(x)
      y = int(y)
      G[x].append(y)
      if undirected:
        G[y].append(x)
  
  G.make_consistent()
  return G




def load_matfile(file_, variable_name="network", undirected=True):
  mat_varables = loadmat(file_)
  mat_matrix = mat_varables[variable_name]


  return from_numpy(mat_matrix, undirected)




def from_networkx(G_input, undirected=True):
    G = Graph()


    for idx, x in enumerate(G_input.nodes()):
        for y in iterkeys(G_input[x]):
            G[x].append(y)


    if undirected:
        G.make_undirected()


    return G




def from_numpy(x, undirected=True):
    G = Graph()


    if issparse(x):
        cx = x.tocoo()
        for i,j,v in zip(cx.row, cx.col, cx.data):
            G[i].append(j)
    else:
      raise Exception("Dense matrices not yet supported.")


    if undirected:
        G.make_undirected()


    G.make_consistent()
    return G




def from_adjlist(adjlist):
    G = Graph()
    
    for row in adjlist:
        node = row[0]
        neighbors = row[1:]
        G[node] = list(sorted(set(neighbors)))


    return G




def from_adjlist_unchecked(adjlist):
    G = Graph()
    
    for row in adjlist:
        node = row[0]
        neighbors = row[1:]
        G[node] = neighbors


    return G

至于skipgram,大家可以直接用gensim工具即可.

from gensim.models import Word2Vec
from gensim.models.word2vec import Vocab


logger = logging.getLogger("deepwalk")


class Skipgram(Word2Vec):
    """A subclass to allow more customization of the Word2Vec internals."""


    def __init__(self, vocabulary_counts=None, **kwargs):


        self.vocabulary_counts = None


        kwargs["min_count"] = kwargs.get("min_count", 0)
        kwargs["workers"] = kwargs.get("workers", cpu_count())
        kwargs["size"] = kwargs.get("size", 128)
        kwargs["sentences"] = kwargs.get("sentences", None)
        kwargs["window"] = kwargs.get("window", 10)
        kwargs["sg"] = 1
        kwargs["hs"] = 1


        if vocabulary_counts != None:
          self.vocabulary_counts = vocabulary_counts


        super(Skipgram, self).__init__(**kwargs)

应用

在推荐场景中,无论是推荐商品还是广告,用户和item其实都可以通过点击/转化/购买等行为构建二部图,在此二部图中进行随机游走,学习每个节点的向量,在特定场景,缺乏特征和标签的情况下,可以通过user2user或者item2iterm的方式,很好的泛化到其他的标签.GNN提取的向量也可以用于下游双塔召回模型或者排序模型.如果有社交网络,通过挖掘人与人直接的关系提取特征,供下游任务也是个不错的选择.当然大家也可以尝试在一些推荐比赛中用于丰富特征.


往期精彩回顾



适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载机器学习的数学基础专辑温州大学《机器学习课程》视频
本站qq群851320808,加入微信群请扫码:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值