【Python】Pandas/Sklearn进行机器学习之特征筛选,有效提升模型性能

今天小编来说说如何通过pandas以及sklearn这两个模块来对数据集进行特征筛选,毕竟有时候我们拿到手的数据集是非常庞大的,有着非常多的特征,减少这些特征的数量会带来许多的好处,例如

  • 提高预测的精准度

  • 降低过拟合的风险

  • 加快模型的训练速度

  • 增加模型的可解释性

事实上,很多时候也并非是特征数量越多训练出来的模型越好,当添加的特征多到一定程度的时候,模型的性能就会下降,从下图中我们可以看出,

因此我们需要找到哪些特征是最佳的使用特征,当然我们这里分连续型的变量以及离散型的变量来讨论,毕竟不同数据类型的变量处理的方式不同,我们先来看一下对于连续型的变量而言,特征选择到底是怎么来进行的。

75354b37b91f241f169682f8f79c40c5.png

计算一下各个变量之间的相关性

我们先导入所需要用到的模块以及导入数据集,并且用pandas模块来读取

from sklearn.datasets import load_boston
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE
from sklearn.linear_model import RidgeCV, LassoCV, Ridge, Lasso

这次用到的数据集是机器学习中尤其是初学者经常碰到的,波士顿房价的数据集,其中我们要预测的这个对象是MEDV这一列

x = load_boston()
df = pd.DataFrame(x.data, columns = x.feature_names)
df["MEDV"] = x.target
X = df.drop("MEDV",1)   #将模型当中要用到的特征变量保留下来
y = df["MEDV"]          #最后要预测的对象
df.head()

output

CRIM    ZN  INDUS  CHAS    NOX  ...    TAX  PTRATIO       B  LSTAT  MEDV
0  0.00632  18.0   2.31   0.0  0.538  ...  296.0     15.3  396.90   4.98  24.0
1  0.02731   0.0   7.07   0.0  0.469  ...  242.0     17.8  396.90   9.14  21.6
2  0.02729   0.0   7.07   0.0  0.469  ...  242.0     17.8  392.83   4.03  34.7
3  0.03237   0.0   2.18   0.0  0.458  ...  222.0     18.7  394.63   2.94  33.4
4  0.06905   0.0   2.18   0.0  0.458  ...  222.0     18.7  396.90   5.33  36.2

我们可以来看一下特征变量的数据类型

df.dtypes

output

CRIM       float64
ZN         float64
INDUS      float64
CHAS       float64
NOX        float64
RM         float64
AGE        float64
DIS        float64
RAD        float64
TAX        float64
PTRATIO    float64
B          float64
LSTAT      float64
MEDV       float64
dtype: object

我们看到都是清一色的连续型的变量,我们来计算一下自变量和因变量之间的相关性,通过seaborn模块当中的热力图来展示,代码如下

plt.figure(figsize=(10,8))
cor = df.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
plt.show()

相关系数的值一般是在-1到1这个区间内波动的

  • 相关系数要是接近于0意味着变量之间的相关性并不强

  • 接近于-1意味着变量之间呈负相关的关系

  • 接近于1意味着变量之间呈正相关的关系

我们来看一下对于因变量而言,相关性比较高的自变量有哪些

# 筛选出于因变量之间的相关性
cor_target = abs(cor["MEDV"])
# 挑选于大于0.5的相关性系数
relevant_features = cor_target[cor_target>0.5]
relevant_features

output

RM         0.695360
PTRATIO    0.507787
LSTAT      0.737663
MEDV       1.000000
Name: MEDV, dtype: float64

筛选出3个相关性比较大的自变量来,然后我们来看一下自变量之间的相关性如何,要是自变量之间的相关性非常强的话,我们也只需要保留其中的一个就行,

print(df[["LSTAT","PTRATIO"]].corr())
print("=" * 50)
print(df[["RM","LSTAT"]].corr())
print("=" * 50)
print(df[["PTRATIO","RM"]].corr())

output

LSTAT   PTRATIO
LSTAT    1.000000  0.374044
PTRATIO  0.374044  1.000000
==================================================
             RM     LSTAT
RM     1.000000 -0.613808
LSTAT -0.613808  1.000000
==================================================
          PTRATIO        RM
PTRATIO  1.000000 -0.355501
RM      -0.355501  1.000000

从上面的结果中我们可以看到,RM变量和LSTAT这个变量是相关性是比较高的,我们只需要保留其中一个就可以了,我们选择保留LSTAT这个变量,因为它与因变量之间的相关性更加高一些

递归消除法

我们可以尝试这么一种策略,我们选择一个基准模型,起初将所有的特征变量传进去,我们再确认模型性能的同时通过对特征变量的重要性进行排序,去掉不重要的特征变量,然后不断地重复上面的过程直到达到所需数量的要选择的特征变量。

LR= LinearRegression()
# 挑选出7个相关的变量
rfe_model = RFE(model, 7)
# 交给模型去进行拟合
X_rfe = rfe_model.fit_transform(X,y)  
LR.fit(X_rfe,y)
# 输出各个变量是否是相关的,并且对其进行排序
print(rfe_model.support_)
print(rfe_model.ranking_)

output

[False False False  True  True  True False  True  True False  True False
  True]
[2 4 3 1 1 1 7 1 1 5 1 6 1]

第一行的输出包含TrueFalse,其中True代表的是相关的变量对应下一行的输出中的1,而False包含的是不相关的变量,然后我们需要所需要多少个特征变量,才能够使得模型的性能达到最优

#将13个特征变量都依次遍历一遍
feature_num_list=np.arange(1,13)
# 定义一个准确率
high_score=0
# 最优需要多少个特征变量
num_of_features=0           
score_list =[]
for n in range(len(feature_num_list)):
    X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, random_state = 0)
    model = LinearRegression()
    rfe_model = RFE(model,feature_num_list[n])
    X_train_rfe_model = rfe_model.fit_transform(X_train,y_train)
    X_test_rfe_model = rfe_model.transform(X_test)
    model.fit(X_train_rfe_model,y_train)
    score = model.score(X_test_rfe_model,y_test)
    score_list.append(score)
    if(score>high_score):
        high_score = score
        num_of_features = feature_num_list[n]
print("最优的变量是: %d个" %num_of_features)
print("%d个变量的准确率为: %f" % (num_of_features, high_score))

output

最优的变量是: 10个
10个变量的准确率为: 0.663581

从上面的结果可以看出10个变量对于整个模型来说是最优的,然后我们来看一下到底是哪10个特征变量

cols = list(X.columns)
model = LinearRegression()
# 初始化RFE模型,筛选出10个变量
rfe_model = RFE(model, 10)             
X_rfe = rfe.fit_transform(X,y)  
# 拟合训练模型
model.fit(X_rfe,y)              
df = pd.Series(rfe.support_,index = cols)
selected_features = df[df==True].index
print(selected_features)

output

Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'DIS', 'RAD', 'PTRATIO',
       'LSTAT'],
      dtype='object')

正则化

例如对于Lasso的正则化而言,对于不相关的特征而言,该算法会让其相关系数变为0,因此不相关的特征变量很快就会被排除掉了,只剩下相关的特征变量

lasso = LassoCV()
lasso.fit(X, y)
coef = pd.Series(lasso.coef_, index = X.columns)

然后我们看一下哪些变量的相关系数是0

print("Lasso算法挑选了 " + str(sum(coef != 0)) + " 个变量,然后去除掉了" +  str(sum(coef == 0)) + "个变量")

output

Lasso算法挑选了10个变量,然后去除掉了3个变量

我们来对计算出来的相关性系数排个序并且做一个可视化

imp_coef = coef.sort_values()
matplotlib.rcParams['figure.figsize'] = (8, 6)
imp_coef.plot(kind = "barh")
plt.title("Lasso Model Feature Importance")

output

6a5924cd1529ca86acad50e4bc3571dc.png

可以看到当中有3个特征,‘NOX’、'CHAS'、'INDUS'的相关性为0

根据缺失值来进行判断

下面我们来看一下如何针对离散型的特征变量来做处理,首先我们可以根据缺失值的比重来进行判断,要是对于一个离散型的特征变量而言,绝大部分的值都是缺失的,那这个特征变量也就没有存在的必要了,我们可以针对这个思路在进行判断。

首先导入所需要用到的数据集

train = pd.read_csv("credit_example.csv")
train_labels = train['TARGET']
train = train.drop(columns = ['TARGET'])

我们可以先来计算一下数据集当中每个特征变量缺失值的比重

missing_series = train.isnull().sum() / train.shape[0]
df = pd.DataFrame(missing_series).rename(columns = {'index': '特征变量', 0: '缺失值比重'})
df.sort_values("缺失值比重", ascending = False).head()

output

缺失值比重
COMMONAREA_AVG            0.6953
COMMONAREA_MODE           0.6953
COMMONAREA_MEDI           0.6953
NONLIVINGAPARTMENTS_AVG   0.6945
NONLIVINGAPARTMENTS_MODE  0.6945

我们可以看到缺失值最高的比重将近有70%,我们也可以用可视化的根据来绘制一下缺失值比重的分布图

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.figure(figsize = (7, 5))
plt.hist(df['缺失值比重'], bins = np.linspace(0, 1, 11), edgecolor = 'k', color = 'blue', linewidth = 2)
plt.xticks(np.linspace(0, 1, 11));
plt.xlabel('缺失值的比重', size = 14); 
plt.ylabel('特征变量的数量', size = 14); 
plt.title("缺失值分布图", size = 14);

output

3a00ae9a70503aed4edbd971f399f159.png

我们可以看到有一部分特征变量,它们缺失值的比重在50%以上,有一些还在60%以上,我们可以去除掉当中的部分特征变量

计算特征的重要性

在基于树的众多模型当中,会去计算每个特征变量的重要性,也就是feature_importances_属性,得出各个特征变量的重要性程度之后再进行特征的筛选

from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier()
# 模型拟合数据
clf.fit(X,Y)
feat_importances = pd.Series(clf.feature_importances_, index=X.columns)
# 筛选出特征的重要性程度最大的10个特征
feat_importances.nlargest(10)

我们同时也可以对特征的重要性程度进行可视化,

feat_importances.nlargest(10).plot(kind='barh', figsize = (8, 6))

output

bca9c7b129d2206fcdf38014e506c39d.png

除了随机森林之外,基于树的算法模型还有很多,如LightGBMXGBoost等等,大家也都可以通过对特征重要性的计算来进行特征的筛选

Select_K_Best算法

Sklearn模块当中还提供了SelectKBest的API,针对回归问题或者是分类问题,我们挑选合适的模型评估指标,然后设定K值也就是既定的特征变量的数量,进行特征的筛选。

假定我们要处理的是分类问题的特征筛选,我们用到的是iris数据集

iris_data = load_iris()
x = iris_data.data
y = iris_data.target
 
print("数据集的行与列的数量: ", x.shape)

output

数据集的行与列的数量:  (150, 4)

对于分类问题,我们采用的评估指标是卡方,假设我们要挑选出3个对于模型最佳性能而言的特征变量,因此我们将K设置成3

select = SelectKBest(score_func=chi2, k=3)
# 拟合数据
z = select.fit_transform(x,y)
filter_1 = select.get_support()
features = array(iris.feature_names)
print("所有的特征: ", features)
print("筛选出来最优的特征是: ", features[filter_1])

output

所有的特征:  ['sepal length (cm)' 'sepal width (cm)' 'petal length (cm)'
 'petal width (cm)']
筛选出来最优的特征是:  ['sepal length (cm)' 'petal length (cm)' 'petal width (cm)']

那么对于回归的问题而言,我们可以选择上面波士顿房价的例子,同理我们想要筛选出对于模型最佳的性能而言的7个特征变量,同时对于回归问题的评估指标用的是f_regression

boston_data = load_boston()
x = boston_data.data
y = boston_data.target

然后我们将拟合数据,并且进行特征变量的筛选

select_regression = SelectKBest(score_func=f_regression, k=7)
z = select_regression.fit_transform(x, y)

filter_2 = select_regression.get_support()
features_regression = array(boston_data.feature_names)
 
print("所有的特征变量有:")
print(features_regression)
 
print("筛选出来的7个特征变量则是:")
print(features_regression[filter_2])

output

所有的特征变量有:
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
 'B' 'LSTAT']
筛选出来的7个特征变量则是:
['CRIM' 'INDUS' 'NOX' 'RM' 'TAX' 'PTRATIO' 'LSTAT']

964df3dae5b51146775aeada6ea74645.png

 
 
 
 
 
 
 
 
往期精彩回顾




适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载黄海广老师《机器学习课程》视频课黄海广老师《机器学习课程》711页完整版课件

本站qq群955171419,加入微信群请扫码:

bd0e720b4bc4d71d0f66a77243e0dc51.png

机器学习是一门利用计算机算法来使计算机从大量数据中学习和提取模式的技术。在机器学习中,numpy、pandassklearn是三个非常重要且常用的库。 首先,numpy是一个Python数值计算库,提供了高性能的多维数组对象,以及处理这些数组的工具。机器学习算法通常需要对大量的数据进行处理和计算,numpy提供了快速有效的数组操作和计算方法,使得机器学习的数据处理更加高效。 其次,pandas是一个数据分析工具,提供了高性能的数据结构和数据分析工具。在机器学习中,我们通常需要对数据进行清洗、处理和预处理,pandas提供了强大的数据处理功能,可以方便地进行数据清洗、筛选和转换等操作。同时,pandas还提供了灵活的数据结构,如Series和DataFrame,使得数据的管理和分析更加方便。 最后,sklearn是一个用于机器学习Python库,提供了丰富的机器学习算法和工具。sklearn包含了常用的分类、回归、聚类等机器学习算法,同时还提供了特征选择、数据预处理、模型评估等功能。sklearn与numpy和pandas结合使用,可以更加方便地进行机器学习任务的实现和评估。 总之,学习掌握numpy、pandassklearn这三个库是机器学习的基础。它们提供了强大的数值计算、数据处理和机器学习算法的功能,可以帮助我们更加高效地进行数据分析机器学习模型的构建。了解和使用这些库,将极大地提升机器学习的效率和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值