Wanderist_

data science is metaphysics

anaconda利用conda命令搭建python虚拟环境(python3.6为例),附带pytorch环境搭建,添加conda清华源,pip清华源

1.先安装anaconda安装包,Python3.6版本的 2.然后运用conda命令新建一个python虚拟环境,conda create -n [name] python=3.6 -y ,这样就新建了一个名字为name 的Python虚拟环境 3.然后对虚拟环境进行激活,命令为 sourc...

2019-01-11 20:21:06

阅读数 70

评论数 0

t-SNE和PCA方法对应的python包

t-SNE和PCA都是可以用来对数据进行降维的,然后python中可以调用对应的包进行实现。 t-SNE(from sklearn.manifold import TSNE) pca(from sklearn.decomposition import PCA)...

2019-01-03 16:36:14

阅读数 24

评论数 0

Kaggle Whale Shark Recognition 比赛途中经验总结

在准备这个比赛的过程中感觉学到了不少,现在总结一下: 经过好几次的比赛与论文写作经历,个人认为比赛和写论文做实验最大的一个区别就是:论文中所引用的都是标准数据集,一般数据集质量高,而比赛中的数据集噪声就比较大,比如,拿到这个比赛的数据集,我们可以看到里面即有黑白图,又有彩色图,既有带文字的图片,...

2019-01-02 10:44:02

阅读数 53

评论数 0

把Cascade Pyramid Network网络应用到天池FashionAI 服装关键点数据集上的经验总结

1.首先最明确的一点就是修改需要检测关键点的个数,COCO数据集姿态识别的关键点个数是17,而FashionAI数据集的总个数是24个,但是不同的服装类别的个数不一样,比如blouse有13个点,但是如果生成24个heatmap,就会至少有11个heatmap是没用的,这样导致GPU内存增大,又使...

2018-12-07 17:25:52

阅读数 238

评论数 1

Latex论文排版需要注意的问题

1.在word编辑好论文后,首先一定要确保,每个逗号,冒号,句号前没有空格,之后有空格,保持英文写作规范。 2.论文中的每个逗号,句号,冒号一定要是英文的,否则latex中将不会显示 3.记得在写  比如 Liu et al. 时et al. 一定要是斜体 ...

2018-12-04 21:54:12

阅读数 38

评论数 0

Kaggle 手机验证码(SMS)无法发送问题解决方法(2018.12.2)亲测可行,同时适用中国大陆申请Kaggle账号

第一步:翻墙,本人用的时lantern 第二步:此时打开kaggle要验证的页面,相比之前会多出来一个   进行人机身份验证    的选择框,所以切记一定要在完成第一步之后,再重新打开需要填写SMS的页面 第三步:勾选  进行人机身份验证 之后,会出现一个问题,比如我当时出现的问题就是,选择下...

2018-12-02 21:23:16

阅读数 578

评论数 0

复现和改进Cascade Pyramid Network(CPN)时总结的经验和心得

1.由于该网络是多任务训练,分别对难检测点和易检测点进行了loss 计算,同时采用了Feature Pyramid Network(FPN)主结构(U-shape)提取特征,因此训练时间比较长,当我对该网络进行了改进时,发现完整从头训练一次需要24~26个epoch,而一个epoch就需要3个半小...

2018-11-07 09:53:57

阅读数 91

评论数 0

dilated conv空洞卷积操作的神奇作用

简单描述,通过空洞卷积可以在保持卷积核参数大小不变的同时,增大卷积的视野。除此之外,在进行空洞卷积前,通过双线性插值,对feature map进行上采样之后,再进行空洞卷积,这样可以在提高feature map的像素的同时,提取更多的全局进行。 一些常见下采样的操作:maxpooling;con...

2018-11-06 21:41:55

阅读数 110

评论数 0

【姿态识别】Convolutional Pose Machines—亮点总结与学习

1.利用每个关键点的响应图(即平面上的点的数值满足正态分布,可以画出三维高斯图)来表达各个部位的空间约束,相当于把点的回归转化成面的回归,减少误差。同时论文中把中心点的响应也作为网络的输入,用来做中心约束。 2.由于论文中提出的网络是分阶段的,因此在训练的时候,如果只用最后一阶段的的输出和lab...

2018-10-16 10:10:47

阅读数 110

评论数 0

YOLO算法理解与思考

看完YOLO算法后,觉得真的是非常棒的一个对象检测算法。 最主要的亮点是他的检测速度快,这和其中的只用一次卷积提取特征有关,也就是说,该算法不是先对图像进行区域划分再进行卷积提特征分类,而是一个端到端的一次性的回归出bounding box和classification,即输出 n * n * ...

2018-10-12 20:53:09

阅读数 104

评论数 0

总结CNN的发展历程,以及一些卷积操作的变形,附带基础的深度学习知识与公式

1.Lenet-5  :最先出现的卷积神经网络,1998年,由于当时的硬件还不成熟,因此到了2012年出现了AlexNet 2.AlexNet:可以说是现在卷积神经网络的雏形 3.VGGNet:五个模块的卷积叠加,网络结构如下:   4.GoogleNet:inception v1,v...

2018-10-01 14:13:15

阅读数 208

评论数 0

ACM—leetcode—Longest Palindromic Substring Python解决方法(附代码和思路)

class Solution(object): #暴力破解法 # def ispalindromic(self, s): # if s == s[::-1]: # return True # else: # ...

2018-09-12 16:46:55

阅读数 58

评论数 0

python学习小知识点总结(一)

  1.遇到shape是(22,)这样的其实是按行排列的【1,2,3.......22】 2.K.sum(array,axis=-1)的效果和K.sum(array,axis=1)的效果一样,都是按行进行加和,axis=0代表按列进行加和 3.在对别人代码学习时一定要注意自己的电脑环境需与其...

2018-09-12 16:40:19

阅读数 26

评论数 0

【浅谈量化金融与人工智能——结合中国(横琴)国际高校量化金融大赛总决赛三等奖比赛经历】

      近年来,随着人脸识别,语音识别,自动驾驶等许多领域的火热发展,人工智能逐渐被推向发展浪潮。那么当投资遇上人工智能就有了现在的一种新兴领域——量化金融。人工智能一个很重要的应用领域就是预测,基于今天的数据与历史的数据,可对未来经济走势进行判断。在金融和投资领域,人工智能技术可以对股票,投...

2018-09-12 16:39:01

阅读数 169

评论数 0

2018中国高校计算机大赛—大数据挑战赛(top2解题方案)

比赛链接:https://www.kesci.com/home/competition/5ab8c36a8643e33f5138cba4/leaderboard/1 经过激烈的竞争,从俩千多人,一千二百多支队伍,从初赛到复赛再到决赛的答辩,最终拿到了第二的名次,虽然有点遗憾,但参加这个比赛收获了...

2018-09-12 16:32:56

阅读数 551

评论数 0

【lightgbm 使用经验总结教训】

做快手公司举办的2018中国高校计算机大赛--大数据挑战赛有半个月了,从5月30日开始到现在基本一直在构造特征,但是当我构造的特征到后期的时候,发现加特征之后,明明验证集上的准确率提高了,但是线上的结果一直提不上去,我怀疑的是特征的问题,但是今天6月13日,我仔细看了lightgbm算法的说明文档...

2018-06-13 13:49:14

阅读数 6340

评论数 3

【python编程时需要注意的问题总结一】

1.一定要注意变量类型的统一与变换,例如:user_id_7 = [it for it in user_id_7 if it not in regi_7_user_id]其中regi_7_user_id为DataFrame类型,没有转换成list,程序不报错,但是并不是我想要的结果,因此一定要先转...

2018-06-01 10:43:08

阅读数 149

评论数 0

【阅读论文方法总结】

1.快速浏览摘要,看是否有自己需要的东西。2.如果需要,github上查找相关论文代码,对照着论文进行阅读,这样效率高,能够快速理解

2018-05-25 15:10:24

阅读数 149

评论数 0

【计算机视觉英文名词笔记】

ROI: Region of InterestOHEM:Online Hard Example Mining

2018-05-25 14:57:33

阅读数 89

评论数 0

【极限学习机ELM与DELM——python实现与应用】

一、对ELM算法与DELM算法的理解ELM算法和神经网络算法我认为最大的区别在于:ELM不需要进行迭代,而是一次性通过标签计算出最后一层神经元的权重。而神经网络是通过梯度下降的方法,不断的根据loss值更新权重值。因此我认为ELM算法不适合构造出更深的网络结构,但是减少了计算量,少了机器开销。而D...

2018-05-23 18:33:50

阅读数 1981

评论数 10

提示
确定要删除当前文章?
取消 删除
关闭
关闭