【Python】机器学习绘图神器Matplotlib首秀!

公众号:尤而小屋
作者:Peter
编辑:Peter

Matplotlib是一个非常经典的绘图库,甚至有人将numpy+pandas+matplotlib称之为数据分析三剑客,足以说明这个库的重要性。虽然Peter钟情于Plotly,但掌握Matplotlib绘制技巧也非常重要。

基于Matplotlib的绘图技巧太多了,想深入学习的小伙伴建议直接官网:https://matplotlib.org/

从本文中你将学习到以下几点:

  • 基本图形绘制:折线图、柱状图、直方图、双轴线图等

  • 绘制小技巧:添加图例、标题、注释、颜色等

  • 实战:股票趋势图和K线图制作

62445528981c262b8328023833ff0bcc.png

导入库

一般绘图的时候需要导入常见的库;在使用matplotlib绘制的时候还需要解决中文的问题

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

# 用来正常显示中文标签
plt.rcParams['font.sans-serif'] = ['SimHei']  
# 解决负号“-”显示为
plt.rcParams['axes.unicode_minus'] = False

折线图

x = [2,3,4]
y = [4,6,8]

plt.plot(x,y)
plt.show()
c79a361d5db53932045708076d90333b.png

多折线图

# 默认参数
x1 = np.array([1,3,5])
y1 = x1 + 4
plt.plot(x1,y1)

# 第二条红线
y2 = x1 * 2
plt.plot(x1,y2,color="red",linewidth=3,linestyle="--")
plt.show()
0eacaab97304e96bf98df7f4f7a6ae1e.png

柱状图

x = [2,3,4,5,6]
y = [4,6,8,10,12]

plt.bar(x,y)
plt.show()
257c9a96798956d50196b41eb81f3832.png

散点图

x = np.random.rand(20)  # 0-1之间的20个随机数
y = np.random.rand(20)

plt.scatter(x,y)
plt.show()
166ba61c95ef7591516940dcb4c2a3b9.png

直方图

# 随机生成1000个服从正态分布的数据,均值为0,标准差为1
data = np.random.randn(1000)

plt.hist(data, bins=40, edgecolor="black")
plt.show()
eeacdef06fdb66e6b37d2d9aa29f64e0.png

频率直方图

主要是y轴发生了变化,全部是小数表示的

data = np.random.randn(1000)

# 区别:加上参数density=1
plt.hist(data, bins=40, density=1, edgecolor="black")
plt.show()
d1a71029d876e2a4d0e2252132401370.png

绘图技巧

技巧1:设置大小

x = [2,3,4]
y = [4,6,8]

plt.plot(x,y)
#设置大小  8代表800像素
plt.rcParams["figure.figsize"] = (8,6)

plt.show()
b0ca4c236a480b7cae013dc6cbabcf85.png

添加文字说明

文字说明包含标题、轴标签等

x = [2,3,4]
y = [4,6,8]

plt.plot(x,y)
# 添加标题和轴名称
plt.title("Title")
plt.xlabel("x axis")
plt.ylabel("y axis")

plt.show()
4ae9e15fc43fb042c38442e1bc38dc05.png

修改线条样式

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
x=np.arange(1,8)

plt.plot(x,marker='>')
plt.plot(x+4,marker='+')
plt.plot(x*2,marker='o')
plt.show()
a57e87437a4b9b1b9f8bd3d79a44de63.png

添加注释

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False

x=[1, 2, 3, 4]
y=[1, 4, 9, 16]

plt.plot(x,y)
plt.xlabel('x坐标轴')
plt.ylabel('y坐标轴')
plt.title('标题')

# 添加注释
plt.annotate('我是注释', 
             xy=(2,5), 
             xytext=(2, 10),
            arrowprops=dict(facecolor='black', 
                            shrink=0.01),
            )

plt.show()
e709fac0f38a2c79c74caa63909c4c9d.png

添加图例

# 第一条
x1 = np.array([1,3,5])
y1 = x1 + 4
plt.plot(x1,y1,label="y=x+4 ")

# 第二条红线
y2 = x1 * 2
plt.plot(x1,y2,
         color="red",
         linewidth=3,
         linestyle="--",
         label="y=x*2")

# 设定位置
plt.legend(loc='upper left')
plt.show()
c79c16e1450390b2510a0ca596ca723d.png

调整颜色

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

x=np.arange(1,8)

#颜色的多种写法
plt.plot(x,color='r')  # r表示red  g表示green  b表示blue
plt.plot(x+1,color='0.5')
plt.plot(x+2,color='#AF00FF')
plt.plot(x+3,color=(0.1,0.2,0.3))
plt.show()
294ea539256e67c956a8a76007cce03a.png

设置双轴

# 1
x1 = np.array([1,3,5])
y1 = 50*x1 + 14
plt.plot(x1,y1,label="y=50 * x + 4 ")
plt.legend(loc='upper right') # 图例位置

# 重要代码:设置双轴
plt.twinx()  

# 2
y2 = -x1 * 20 + 3
plt.plot(x1,y2,color="red",
         linewidth=3,
         linestyle="--",
         label="y=-x * 20 + 3")
plt.legend(loc='upper left')

plt.show()
785ac814a382d48e5d99579704d8d8c1.png

旋转轴刻度

当某个轴的刻度值过长的时候,我们可以通过旋转的方式进行显示

x = ["Monday","Thursday","Wednesday"]
y = [4,6,8]

plt.plot(x,y)
plt.xticks(rotation=45)

plt.show()
313a49aa8f7f2e0e622b969a4b712bba.png

绘制多图-方法1

import matplotlib.pyplot as plt

# 绘制第1张子图:折线图
ax1 = plt.subplot(221)
plt.plot([1, 2, 3], [2, 4, 6])

# 绘制第2张子图:柱形图
ax2 = plt.subplot(222)
plt.bar([1, 2, 3], [2, 4, 6])

# 绘制第3张子图:散点图
ax3 = plt.subplot(223)
plt.scatter([1, 3, 5], [7, 9, 11])

# 绘制第4张子图:直方图
ax4 = plt.subplot(224)
plt.hist([2, 5, 2, 8, 4])

plt.show()
9e458406cff0a7f3fd8a8c2ef59d05e8.png

绘制多图-方法2

subplots函数主要是两个参数:nrows表示行数,ncols表示列数;同时设置大小figsize。

函数返回的是画布fig和子图合集axes

fig, axes = plt.subplots(nrows=2, ncols=2,figsize=(10,6))

# flatten表示将子图合集展开,得到每个子图
ax1,ax2,ax3,ax4 = axes.flatten()

ax1.plot([1, 2, 3], [2, 4, 6])
ax2.bar([1, 2, 3], [2, 4, 6])
ax3.scatter([1, 3, 5], [7, 9, 11])
ax4.hist([2, 5, 2, 8, 4])

plt.show()
0034ba5e617a30dafc2f38ff2624764f.png

实战:绘制股票趋势图

我们从Tushare官网来获取股票的数据,首先安装:

pip install tushare

获取数据

import tushare as ts

df = ts.get_k_data("000001",start="2020-05-08",end="2020-08-08")
df
ef225fcb86efbbf36c6b607356144be7.png

为了方便后续的绘图,需要将日期date字段改成索引:

# 将日期设置成索引
df1 = df.set_index("date")
03bcc2e80ffdbe85901bf6a03be585dd.png

默认绘图

我们使用收盘价close来绘制默认的图形

fig = df1["close"].plot()

plt.show()
df076dfd0b23fb5a9061056ce19a2342.png

添加标题

# Pandas直接绘图
fig = df["close"].plot(title="PingAn")
plt.show()
c5d136a67f417dc689bf6852dd7799dd.png

上面是使用Pandas内置的折线图方法来绘制,下面使用Matplobtlib来绘制:

# 使用Matplotlib绘图

# 获取数据
# import tushare as ts
# df = ts.get_k_data("000001",start="2018-08-08",end="2020-08-08")

# 调整时间
from datetime import datetime
df["date"] = df["date"].apply(lambda x:datetime.strptime(x,"%Y-%m-%d"))

# 绘制折线图
import matplotlib.pyplot as plt
%matplotlib inline

plt.plot(df["date"],df["close"])
# 标题
plt.title("PingAn")
# 旋转
plt.xticks(rotation=-45)  
plt.show()
5bb5910001ba4c755993de0bc4800e98.png

实战进阶:绘制K线图+成交量

首先,我们了解一点基本的股票知识:股市的涨跌对K线图的影响

d806c4123a49ffe195c172fae21631a9.png 4fefe905b57b746f57f892c6495e05bc.png

安装库

为了绘制k线图,我们需要安装一个库:

#安装库mpl_finance
pip install mpl_finance

获取代码

df = ts.get_k_data("000001",start="2020-09-08",end="2021-03-08")
df.head()

8368b9e4b71983d1db03eba6cd391d52.png


  • date:日期

  • open:开盘价

  • close:收盘价

  • high:最高价

  • low:最低价

  • volume:成交量

  • code:股票代码

日期格式转化

定义一个将字符串形式的日期转成数字型的函数:

from matplotlib.pylab import date2num
import datetime

def date_to_number(dates):
    number_time = []
    for date in dates:
        # 字符串转时间戳格式
        date_time = datetime.datetime.strptime(date,"%Y-%m-%d")
        # 时间戳格式转成数字格式
        number_date = date2num(date_time)
        number_time.append(number_date)
    return number_time

下面进行的操作是取出上面数据中的values部分并转成numpy;同时调用上面的函数:

# DataFrame转成numpy数组格式
df1 = df.values  

# 将二维数组的日期转成数字(使用上面的函数)
df1[:,0] = date_to_number(df1[:,0])

绘制K线图

fig, ax = plt.subplots(figsize=(15,6))

mpf.candlestick_ochl(ax, # 绘图Axes的实例,画布中的子图
                     df1,  # 带绘图的数据
                     width=0.5,  # K线柱形的宽度
                     colorup="red",  # 收盘价>开盘价
                     colordown="green",  # 收盘价<开盘价
                     alpha=5)  # 柱子的透明度

plt.grid(True)  # 显示网格线
ax.xaxis_date() # 将x轴设置成常规的日期格式
c2218168b0f9f67c8e8d6dacdba1fa16.png

添加均线

下面的代码是添加5日和20日的均线数据:

5660de6c168250262ca73577fcfe0c89.png

绘制均线图

fig, ax = plt.subplots(figsize=(15,6))

mpf.candlestick_ochl(ax, # 绘图Axes的实例,画布中的子图
                     df1,  # 带绘图的数据
                     width=0.5,  # K线柱形的宽度
                     colorup="red",  # 收盘价>开盘价
                     colordown="green",  # 收盘价<开盘价
                     alpha=5)  # 柱子的透明度

# 添加均线
plt.plot(df1[:,0],df["MA5"], c="black")
plt.plot(df1[:,0],df["MA20"])

plt.grid(True)  # 显示网格线
ax.xaxis_date() # 将x轴设置成常规的日期格式

# 添加标题
plt.title("PingAn")
plt.xlabel("date")
plt.ylabel("Price")
plt.show()
a47d41be040c674519a3f54dbed91d6e.png

添加成交量

我们将K线图放在第一个子图位置,将成交量放在第二个位置即可:

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False

# 画布、子图、共享x轴
fig, ax = plt.subplots(2,1,sharex=True,figsize=(15,6)) 

ax1,ax2 = ax.flatten()

# 第一个图
mpf.candlestick_ochl(ax1, # 绘图Axes的实例,画布中的子图
                     df1,  # 带绘图的数据
                     width=0.5,  # K线柱形的宽度
                     colorup="red",  # 收盘价>开盘价
                     colordown="green",  # 收盘价<开盘价
                     alpha=5)  # 柱子的透明度

# 添加均线
ax1.plot(df1[:,0],df["MA5"], c="black")
ax1.plot(df1[:,0],df["MA20"])

# 显示网格线
ax1.grid(True)  
# 将x轴设置成常规的日期格式
ax1.xaxis_date() 
# 添加标题、轴名称等
ax1.set_title("平安股价走势图")
ax1.set_xlabel("时间")
ax1.set_ylabel("价格")
# --------------------------

# 第2个子图
ax2.bar(df1[:,0],df1[:,5])
ax2.set_xlabel("时间")
ax2.set_ylabel("成交量")  # 成交量
ax2.grid(True)
ax2.xaxis_date()

plt.show()
78d3a9a0f66ce79a54587a635f41b012.png
 
 
 
 
 
 
 
 
 
 
往期精彩回顾




适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载黄海广老师《机器学习课程》视频课黄海广老师《机器学习课程》711页完整版课件

本站qq群955171419,加入微信群请扫码:

d824616951f94b1b4ee89c34ae3e584c.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值