自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(241)
  • 收藏
  • 关注

原创 linux内存及磁盘管理

total总的内存大小 used使用了多少 buff/cache运行程序的时候有的一些缓存(在used中包括的,可以通过内核参数释放掉) availabel是释放缓存之后的可用内存大小。swap是交换分区,如果内存真的不够用,linux系统程序会将一部分暂时不需要的内存放到交换分区,它占用的空间在磁盘上。2)parted -l查看分区 (显示格式有区别) 可以查看那个分区、分区挂载在那个目录。查看磁盘的类型:(b--块设备,权限不可以随便进行修改) ls -l /dev/sd?

2024-11-11 16:13:30 261

原创 github删除项目

3.拉到最底下,点击删除仓库,输入项目名即可删除该项目。2.进入要删除的项目,点击项目中的setting进入。

2024-11-11 10:30:03 2004

原创 vs code使用git管理代码

点开按钮1会显示当前分支的修改记录,鼠标移动到修改文件上,会显示出”+“号,点击加号按钮,会将你当前的修改文件放入暂存区,相当于add操作,之后可以点击commit上传gitlab远程服务端,此书需要在message中填入修改信息,说明当前文件修改了哪些内容。moba具备图像显示功能,连接服务器后,显示x11,是一个视频传输显示服务,说明服务器支持图像显示功能。如果你的代码想要显示图像,需要在moba中运行该代码,即可显示cv的图像。点击该按钮,会显示你修改了那些文件,及修改说明,文件修改记录。

2024-11-09 14:41:31 341

原创 深度图和RGB图对齐

这就是最终两个深度相机坐标系和RGB坐标系之间的坐标转换关系,就是博客三中获得的关系式,但是当时看他的博客,没看懂它是怎么出来的公式,现在才明白。一个三维中的坐标点,的确可以在图像中找到一个对应的像素点,但是反过来,通过图像中的一个点找到它在三维中对应的点就很成了一个问题,因为我们并不知道等式左边的Zc的值。深度图和彩色图的配准又叫对齐,之所以需要进行配准,是因为深度图中的坐标点是在深度相机坐标系下获得,彩色图的坐标点是在RGB相机坐标系下获得的。如何求联系两个坐标系的旋转矩阵和平移向量。

2024-10-23 10:58:19 2198

原创 直方图均衡化

很暗的图像,灰度值大部分聚集在0-某一个数,很亮的图像,灰度值大部分聚集在某一个值-255上。直方图均衡化可以增强图像的对比度,思想是将一副图像的直方图分布变成近似均匀分布。对原图像的直方图设置一个阈值,如果直方图的灰度值超过这个阈值,则对图像进行裁剪,超出阈值的部分平均到各个灰度级。将图像分块,对图像块进行直方图均衡化,改进图像局部对比度,获取图像更多细节。避免自适应直方图均衡化导致的图像不连续或者过度增强。3.限制对比度的自适应直方图均衡化。(1)计算统计直方图;(3)计算累计直方图;

2024-10-21 15:14:17 178

原创 python中的assert语句

assert是语句,而不是函数不需要加括号调用,如果表达式为true,语句不会产生任何效果,如果表达式为false,则程序终止,AssertionError,并显示如果程序有逻辑错误的bug,必定在处变量值的组合不符合预期,处于错误状态;try块包含可能会引发异常的代码,except块用于处理异常。assert语句是一种调试程序的手段,仅用于定位可能的错误。块中又引发了另一个异常,并且没有捕获这个新的异常,那么程序会停止并报错。块中什么也不做,或者只是打印了一些信息,程序将继续执行。

2024-09-29 18:43:46 491

原创 langchain中的多向量检索

1.使用mivlus数据库进行多向量检索。直接使用mivlus数据库进行向量检索。

2024-08-20 13:55:24 415

原创 分布式并行策略

将小批量分为n块,每个GPU拿到完整参数计算一块数据的梯度。(通常性能会更好)假如一个批量有128个样本,然后有2个GPU,那么每个GPU可以拿到64个样本。(每个GPU计算完这部分样本的梯度后,会将所i有的梯度加起来,就会完成小批量的梯度的计算。所有梯度相加其实是完整的梯度,模型本质只有一份,进行模型更新,每个gpu模型保存一致。数据并行又包含:DDP、FSDP等。

2024-06-18 18:35:55 1095

原创 LLM推理加速(二)

模型推断过程无法并行,因为只有一个gpu,但是tokenize和Detokenize是cpu上发生的。Detokenize发生的过程,实际上是等前一步的sample完成后,gpu结果完成后,在cpu上做Detokenize。实际上此时GPU就空闲了,即当上一次Sample完成后,可以直接进行下一次Computing的计算,可以不用等下一次Detokenize。这就是流水线优化。

2024-06-05 16:07:54 1002

原创 LLM推理加速原理(一)

输入--->正则化-->qkv三个矩阵层(映射到三个不同空间中)---->q,k,v之后self attention进行三0合一---->线性映射,正则化。

2024-06-05 11:41:27 3751

原创 linux学习(六)

ifconfig: root用户可以查看网卡状态,普通用户: /sbin/ifconfig(需要加上命令的完整路径)

2024-05-28 18:15:46 409

原创 Linux学习(五)

表示。-:对普通文件有什么权限d:对有什么权限基本权限有三种:r、w、x可以填充到以上的九个位置。前三个个字符表示,文件的所属用户对这个文件有什么权限;中间三个字符表示,用户所属的用户组对这个文件有什么权限;最后三个字符表示,除了当前的用户和用户组,其他人对这个文件有什么权限;facl功能解决。(基本功能只能解决:用户、用户组以及其他用户对这个文件的权限)

2024-05-22 22:27:32 369

原创 linux学习(四)

①/etc/passwd 用户配置文件分为7个字段(可手动进行编制):linux中是通过id识别用户,如果用户重复,那么会以最小的id为主。gid当前用户属于那个组;用户的家目录在什么位置;用户登录的命令解释器。②/etc/shadow 保存用户和用户密码相关信息③/etc/group 和用户组相关的文件其他组设置:包括用户名称;(postfix是用户的uid;该用户属于postfix和mail组)

2024-05-21 22:12:10 631

原创 linux学习(三)

文件系统自带的限制用户使用多少磁盘的功能,就叫用户磁盘配额。①xfs磁盘系统首先对硬盘进行分区(上一篇文章有);xfs系统对分区进行格式化(-f选项强制格式化);设置挂载目录,如果目录不存在需要创建,存在不对它进行任何操作。挂载;如果想要它支持默认的磁盘配额,需要对他增加默认选项。下次开机生效:需要将上述两个选项加载到default配置文件。使用mount命令查看:挂栽成功,磁盘配额成功。方便后续操作,更改文件权限。查看磁盘配额:(查看组、用户)

2024-05-20 19:07:08 386

原创 linux内存磁盘管理

swap:交换分区 内存真的不够用的情况,系统程序会将暂时不需要的内存放到swap中。(win的虚拟内存,内存实际不在内存上,在磁盘上)。②创建空洞文件,seek跳过多少块,一块大小是bs=4MB,跳过20块(seek=20),(相当于有80MB的空洞内容)再往文件中写内容。b:表示块设备,第一个数字:磁盘设备的主设备号,第二个数字:磁盘设备的从设备号,想要知道内存到少GB会以-m的方式显示,多少T,会以-g的方式显示。③(主分区只能建4个和扩展分区(扩展分区可以创建多个逻辑分区))。

2024-05-17 18:40:14 879

原创 linux系统(二)

显示当前的目录名称切换到其他目录查看当前目录下有哪些文件注: / 指根目录 /root 指root用户的家目录不同的颜色表示不同的目录具有不同的权限。clear 可以清除屏幕上的内容。(快捷键ctrl+l)l(第一个字母表示文件类型、文件个数、那个用户创建的文件,用户属于那个用户组、文件大小),不加目录名表示当前文件。ls -r:以逆向的方式操作,单独使用效果不明显,辅助-l使用。以上命令选项可以做合并:cd + 文件目录。

2024-05-16 17:42:39 594

原创 Linux学习(一)

什么是linux?操作系统,一般安装在服务器上。linux的两种含义:一种是linus编写的开源操作系统内核;另一种是广义操作系统。(linux系统使用命令行的操作命令,是因为客户端和服务端操作系统要做的事情不同,服务端主要强调系统的稳定性,不需要华丽的界面,需要便利的操作)

2024-05-10 18:27:48 269

原创 asyncio异步编程(三)

迭代器:内部实现__iter__()和__next__()方法的对象。可迭代对象:内部实现__iter__()方法,并且可以返回迭代器的对象。异步迭代器:实现__aiter__()和__anext__()方法的对象。异步可迭代对象:内部实现__aiter__()方法,并且可以返回迭代器的对象。可迭代对象或者迭代器可以被for循环。async for遍历方式使用时,必须写在协程函数内。

2024-04-30 14:36:58 228

原创 协程的意义(二)

在一个线程中,如果遇到IO等待,线程不会一直在等待,而是利用空余时间去完成别的任务(充分利用线程)。示例:下载图片①普通的方式下载图片(同步方式)②使用协程的方式下载图片(异步方式,也可通过线程池、进程池完成,可称为异步编程)

2024-04-19 18:38:53 804

原创 asyncio异步编程

当一个线程在执行他的协程函数时,如果遇到yiled from asyncio的情况,他不会在这一直等待,在等待的过程中会切换到其他的协程函数。③的功能与②相同,但是新的版本中,可以不用装饰器,直接使用asyncio关键字,yield from也可以使用await做替换。定义两个协程函数,将两个协程函数放到一个task列表,将task列表放到事件循环。本质是用一个线程在一段代码中来会切换游走的线程,是一种用户态内的上下文切换技术。1.协程:(不是计算机中真实存在的,人为创造出的概念),也可称为微线程。

2024-04-16 18:37:56 346

原创 Flask架构--路由和蓝图

app.route装饰器。(装饰器为某个url指定对应的视图函数)falsk框架中,视图定义在那,路由就跟着在哪。查看所有的路由,需要查看所有的视图函数。定义flask 视图时,如果不加入任何请求方式,他只支持get和自带的请求方式。需要其他请求方式时,要放开请求方式,通过methods参数,他是一个列表形式的参数。需求二:在构建一个网站时,不只有一个视图函数,业务逻辑处理多,可能需要定义很多接口,所以视图就会有很多。视图多的情况下,在文件中进行管理,用到蓝图。可以所有视图的所有路由添加前缀。

2024-01-14 20:21:46 1234

原创 C++中的宏定义

宏定义

2023-10-08 16:14:05 638

原创 C++入门(文件结构)

头文件和源文件是什么

2023-10-08 15:39:46 404

原创 drag diffusion中的gradio代码逐行解析(二)

5.gr.Button("Generate Image")创建按钮,用户可以点击按钮执行特定的操作。1.gr.Number(数字):用于处理数值输入和输出。数值可以选择False,不可见功能。2.gr.Slider(滑块):用于创建可拖动的滑块,用于选择范围内的数值。3.gr.Dropdown(下拉选项):创建下拉选项菜单,方便用户进行选择。select()用于监听用户在组件中的选择事件。6.使用click()方法监听组件的点击事件。

2023-09-22 18:21:47 716

原创 Yolo v8数据马赛克数据增强代码详解

x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image),确定画布区域。9.将标签中的(x,y,w,h)坐标转换为,(w,h,padw,padd)为相对于resize之后图像的数据,该函数的功能是将(x,y,w,h)坐标转换为标签的左上角和右下角坐标。i=0时,左上角的范围:x1a, y1a, x2a, y2a,马赛克图像的左上角和右下角。

2023-09-22 17:27:18 2409

原创 drag diffusion中的gradio代码逐行解析

drag diffusion中drag_ui源码解析

2023-09-20 18:48:46 943

原创 Yolo v8中的上下文管理器

上下文管理器中有__enter__()和__exit__()俩个特殊方法。__enter__()方法在with语句块执行前调用,负责获取资源并返回资源对象。with语句开始执行时,会先调用__enter__()方法中的内容用于获取资源,这一部分可以进行资源对象的操作。__enter__()方法返回self自身作为资源对象。上下文管理器通过with语句来自动获取和释放资源,确保资源的正确管理和关闭,避免资源泄露和错误。上下文管理器的使用:具备上下文管理器之后,可以直接使用with语句管理资源的获取和释放。

2023-09-20 08:18:36 172

原创 def __apply()方法详解

Yolo v8的_apply()方法

2023-09-19 16:23:01 438 1

原创 Yolo v8代码解析(二)

Yolo v8代码解析

2023-09-19 14:13:23 564

原创 Yolo v8代码逐行解读

Yolo v8代码逐行解读

2023-09-19 11:09:46 2632

原创 Stable diffusion模型种类说明

stable diffusion风格分类。

2023-09-13 15:50:26 2625

原创 从维基百科通过关键字爬取指定文本内容

从维基百科通过关键字查找爬取指定文本内容。

2023-09-11 17:15:49 699

原创 VS code远程调试代码配置

2.打开远程资源管理器,点击右上角设置进入配置界面,添加远程服务器账号,输入:ssh 用户名@服务器账号,回车。1.下载远程连接插件Remote-SSH。服务器名称右键可进行连接。

2023-08-07 18:36:00 131

原创 linux命令

查看文件内容,直接使用hello.sh执行文件报错;因为在命令行输入的内容都是在PATH中寻找,但是PATH中没有改内容,所以会报错,可以使用相对路径的方式找到当前文件并执行。shebang之后的解释程序需要写绝对路径(如:#!/bin/bash),它是不会到$PATH中寻找解释器的。在linux系统中,程序会分析shebang后的内容,作为解释器的指令。如果脚本未指定shebang,执行过程中会默认调用python解释器。shebang是出现在文本文件的第一行的前两个字符#!执行权限不够,加上权限。

2023-08-04 13:34:01 440

原创 小目标检测总结

1、小目标检测长期以来是目标检测中的一个难点,其旨在精准检测出图像中可视化特征极少的小目标(32 像素×32 像素以下的目标)。相 对于常规尺寸的目标,小目标通常缺乏充足的外观信息,因此难以将它们与背景或相似的目标区分开 来。此外,真实场景是错综复杂的,通常会存在光照剧烈变化、目标遮挡、目标稠密相连和目标尺度变化等问题,而这些因素对 小目标特征的影响是更加剧烈的,进一步加大了小目标检测的难度。2、小目标的定义:基于相对尺度定义,基于绝对尺度定义。将小目标定义为分辨率小于32像素×32像素的目标。Torr

2023-07-31 14:47:45 805

原创 制作YOLO格式数据

xml转换为txt文件。

2023-07-24 18:29:15 249

原创 tensorboard可视化

特征图的可视化

2023-02-22 19:16:43 1139

原创 labelme中json转xml

读取json文件,删除不需要的信息,生成对应xml文件。在生成过程中需要注意坐标问题,看是否需要转换。

2023-02-22 13:31:54 1536 1

原创 python中的继承

super继承

2022-10-14 11:32:35 6012 1

原创 python中的比较方法

python中的方法

2022-10-14 10:53:36 2239

数据处理+图像格式转换

用于统一数据格式,图像数据有的是jpg格式,有的是jpeg格式,使用代码将其他格式转换为jpg格式。

2024-09-04

目标检测+可视化xml标签

针对目标检测标注的bounding box,使用opencv将其绘制在原图上,查看标注结果是否正常。

2024-09-04

目标检测+标签合并+xml文件

合并两个不同标注种类的xml文件,根据项目需求,可能第一批数据只标了人,第二批数据标手机,使用代码,将手机和人的标签进行合并。

2024-09-04

qwen/其他大模型提取输入文本的关键字

使用大模型提取输入文本的关键字,并保存为指令微调数据格式,可用于后续微调关键字模型。(支持qwen/chatglm等常用的大模型,输入输出均为json格式),提示词可私信获取。

2024-07-12

目标检测图片和标签自动化处理

根据jpg图像,自动生成指定格式的xml文件。 修改img和标签名,同时对两者进行重命名。 删除标签中的小像素目标。 删除不含指定标签的xml文件。 从给定图像名称的txt文件中,找到对应的pic图片,并放入指定文件夹。

2024-06-18

目标检测自动标注图片并生成标注文件

基于yolo v5生成的txt文件,自动生成对应的xml标注文件。 使用训练好的权重,对最新的图片进行检测生成txt文件,将txt文件和pic文件,并自定义Annotations文件存放最后的xml标注文件,直接运行make_xml函数,即可生成对应的xml文件。

2024-06-14

大模型+自动生成问答对

为大模型微调过程中数据的产生,提供自动化脚本。 先对pdf或txt文本进行切分,使用langchain方法,在对切分后的文本使用大模型提取问答对。最终生成符合微调数据集格式的json文件。

2024-05-30

FlagEmbedding模型微调时json数据处理

FlagEmbedding项目中对reranker和embedding模型微调。 用于json格式数据处理的,及自动化脚本测试。自动化找出前top1和top5占比。 将instruction-input-output格式数据转换为query-pos-neg数据; 将多个文件的json数据合并; 将json数据划分为训练集和验证集。

2024-05-21

自动化输入query到langchain-chatchat中做知识检索

不用逐个问题输入到langchain_chatchat中进行知识检索结果测试; 可以将问题制作成txt文件,自动化输入到langchain_chatchat中,自动化检索,可以在控制台输出中查看结果,也可以将结果保存到json文件中随时进行查看。

2024-05-21

生成神经网络训练过程中数据的“伪标签”

使用python生成jpg文件对应的txt文件,其中内容可以为空,也可以修改。用于网络训练过程中标签为空的数据。

2023-10-19

python,从视频抽取想要的图片

使用python代码,从某段视频抽取图片,可以用于视频中寻找神经网络的训练素材。直接修改路径就可以使用。

2023-10-19

通过指定目录,读取该目录下所有子文件夹中的内容 输入根目录和指定类别的名字,即可读取所有文件

神经网络数据集路径+通过指定目录,读取该目录下所有子文件夹中的内容+自定义数据集路径。 给定该类图像所在的根目录和类别名称,数据集路径组成如下: dataset ... 根目录 cat ...类别名称 train ...训练集 good ...正样本 bad ...负样本 test ...测试集 good ...正样本 bad ...负样本

2023-09-18

通过关键字从百度中爬取相匹配图片,可以爬取多种类型也可以爬取一种类型图片

通过re、requests、urlib、BeautifulSoup、os模块实现从百度下载指定类别图片。包含代码逐行解析。

2023-09-14

修改某路径下txt文件内容

修改某路径下txt文件内容+实测可运行+直接输入文件夹路径,即可修改。

2023-09-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除