李航最新《搜索与推荐中的深度学习匹配》新书,190页pdf(附下载)

3d1c2d91b11826ca2c6caf078e84c9ef.png

‍匹配在搜索和推荐中都是一个关键问题,它是衡量文档与查询的相关性或用户对某个条目的兴趣。机器学习已经被用来解决这个问题,它根据输入表示和标记数据学习匹配函数,也被称为“学习匹配”。

近年来,人们努力开发用于匹配搜索和推荐任务的深度学习技术。随着大量数据的可用性、强大的计算资源和先进的深度学习技术,用于匹配的深度学习现在已经成为最先进的搜索和推荐技术。深度学习方法成功的关键在于它在从数据(例如查询、文档、用户、条目和上下文,特别是原始形式)中学习表示和匹配模式的泛化方面的强大能力。

6f067b54e62376f050826d1a83b37f81.png

f65157a6c138354ab906aa580ae5574e.png

便捷获取方式

1. 关注【对白的算法屋】公众号

2. 在【对白的算法屋】公众号后台回复 DLM 即可。

本书系统全面地介绍了最近发展起来的搜索推荐深度匹配模型。首先给出了搜索和推荐匹配的统一观点。这样,两个领域的解决方案就可以在一个框架下进行比较。然后,调查将目前的深度学习解决方案分为两类:表示学习方法和匹配函数学习方法。介绍了搜索中的查询-文档匹配和推荐中的用户-项匹配的基本问题和最新的解决方案。该调查旨在帮助搜索和推荐社区的研究人员深入了解和洞察空间,激发更多的想法和讨论,促进新技术的发展。

匹配并不局限于搜索和推荐。在释义、问题回答、图像注释和许多其他应用程序中都可以发现类似的问题。一般而言,调查中引入的技术可以概括为一个更一般的任务,即匹配来自两个空间的物体。

c52aacf9c0cf8f59ab209ba4155ae9b6.png

图1.1:搜索和推荐匹配的统一视图。

4d92aa4b1a7b3f32701076aa7a8182c6.png

  • 输入层接收两个匹配对象,它们可以是单词嵌入、ID向量或特征向量。

  • 表示层将输入向量转换为分布式表示。这里可以使用MLP、CNN和RNN等神经网络,这取决于输入的类型和性质。

  • 交互层比较匹配对象(例如,两个分布式表示)并输出大量(局部或全局)匹配信号。矩阵和张量可以用来存储信号及其位置。

  • 聚合层将各个匹配信号聚合成一个高级匹配向量。该层通常采用深度神经网络中的pooling和catenation等操作。

  • 输出层获取高级匹配向量并输出匹配分数。可以利用线性模型、MLP、神经张量网络(NTN)或其他神经网络。

5b03ad20cc37d87a79e6cc439b51a696.png

4c3e03883019d3a6be8e0b8e361cec86.png

0b983bc30f49b134ab42d81c5304a852.png‍‍‍‍‍‍‍‍‍‍‍‍

便捷获取方式

1. 关注【对白的算法屋】公众号

2. 在【对白的算法屋】公众号后台回复 DLM 即可。

f6d330e97e0417a31d2f911f4e5aadf0.png

『对白的算法屋』,号主对白,本科创业赚数百万又保送清华硕士,现BAT算法工程师。秋招offer收割机的存在,斩获阿里、美团、字节等8家大厂SSP ofer(含特殊计划),薪资40W-80+W不等。此外,他还成功内推数百人入职大厂,可以内推的公司包含:阿里、字节、美团、快手、京东和小红书,内推入职成功率公司前三。以下是公众号部分原创文章,大家可以感受一下~

  • 0
    点赞
  • 0
    收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值