来源丨尤而小屋
寻找一个好用的数据集需要注意以下几点:
数据集不混乱,否则要花费大量时间来清理数据;
数据集不应包含太多行或列,否则会难以使用;
数据越干净越好,清理大型数据集可能非常耗时;
应该预设一个有趣的问题,而这个问题又可以用数据来回答
数据集网站
AI Studio数据集:开放数据集-百度AI Studio - 人工智能学习与实训社区
天池数据集:数据集-阿里系唯一对外开放数据分享平台
Papers With Code数据集:Machine Learning Datasets | Papers With Code
Kaggle 数据集:Find Open Datasets and Machine Learning Projects | Kaggle爱竞赛的盆友们应该很熟悉了,Kaggle上有各种有趣的数据集,拉面评级、篮球数据、甚至西雅图的宠物许可证。
Graviti Open Datasets:公开数据集下载,优质机器学习数据集,图像识别、NLP免费获取 | 格物钛,非结构化数据平台
Huggingface数据集:Hugging Face – The AI community building the future.
CLUE 数据集:https://www.cluebenchmarks.com/dataSet_search.html
UCI机器学习库:最古老的数据集源之一,是寻找有趣数据集的第一站。可以直接从UCI机器学习库下载,无需注册
VisualData:分好类的计算机视觉数据集
目前为止:天池、kaggle、uci是个人使用最多的平台
具体数据集
KITTI数据集:The KITTI Vision Benchmark Suite (cvlibs.net)
Cityscapes:Cityscapes Dataset – Semantic Understanding of Urban Street Scenes (cityscapes-dataset.com)
牛津数据集:Datasets (ox.ac.uk)
ApolloScape:Apollo Scape
BDD100K:Berkeley DeepDrive
Waymo Open Dataset:GitHub - waymo-research/waymo-open-dataset: Waymo Open Dataset
nuScenes数据集:https://www.nuscenes.org/download
3D Photography Dataset:(uiuc.edu)
Matterport 3D重建数据集:Capture, share, and collaborate the built world in immersive 3D (matterport.com)
NoW Dataset:(mpg.de)
Pix3D:Pix3D (mit.edu)
Replica Dataset:GitHub - facebookresearch/Replica-Dataset: The Replica Dataset v1 as published in https://arxiv.org/abs/1906.05797 .
Scan2CAD:[GitHub - skanti/Scan2CAD: CVPR'19] Dataset and code used in the research project Scan2CAD: Learning CAD Model Alignment in RGB-D Scans
ScanNet:ScanNet | Richly-annotated 3D Reconstructions of Indoor Scenes (scan-net.org)
NYC3Dcars:NYC3DCars (cornell.edu)
Expressive Hands and Faces:Computer Vision Group - Home (tum.de)
TUM数据集:SMPL-X (mpg.de)
EUROC数据集:[kmavvisualinertialdatasets – ASL Datasets (ethz.ch)
医疗医学影像数据集
肺结节数据库LIDC-IDRI:LIDC-IDRI - The Cancer Imaging Archive (TCIA) Public Access - Cancer Imaging Archive Wiki
乳腺图像数据库DDSM MIAS:http://deckard.mc.duke.edu/ddsm_sql/book1.html
医学图像问答:Medical Image Format FAQ
ISBI:Challenges - Grand Challenge
github:https://github.com/linhandev/dataset
MIMIC-III:MIT计算生理学实验室的公开数据集,标记了约40000名重症监护患者的健康数据,包括人口统计学、生命体征、实验室测试、药物等维度。
图片
Labelme:带注释的大型图像数据集。
ImageNet:大家熟悉的ImageNet,女神李飞飞参与创建,同名比赛影响整个计算机视觉界。
LSUN:场景理解与许多辅助任务(房间布局估计,显著性性预测等)
MS COCO:同样也是知名计算机视觉数据集,同名比赛每年都被中国人屠榜。
COIL 100:100个不同的物体在360度旋转的每个角度成像。
视觉基因组:非常详细的视觉知识库。
谷歌开放图像:在知识共享下的900万个图像网址集合“已经注释了超过6000个类别的标签”。
野外标记面:13000张人脸标记图像,可以用于开发涉及面部识别的应用程序。
斯坦福狗子数据集:20580张狗子的图片,包括120个不同品种。
室内场景识别:包含67个室内类别,15620个图像。
情绪分析
多域情绪分析数据集:一个稍老一点的数据集,用到了来自亚马逊的产品评论。
IMDB评论:用于二元情绪分类的数据集,不过也有点老、有点小,有大约25000个电影评论。
斯坦福情绪树库:带有情感注释的标准情绪数据集。
Sentiment140:一个流行的数据集,它使用160,000条预先删除表情符号的推文。
Twitter美国航空公司情绪:2015年2月美国航空公司的Twitter数据,分类为正面,负面和中性推文。
自然语言处理NLP
HotspotQA数据集:具有自然、多跳问题的问答数据集,具有支持事实的强大监督,以实现更易于解释的问答系统。
安然数据集:来自安然高级管理层的电子邮件数据。
亚马逊评论:包含18年来亚马逊上的大约3500万条评论,数据包括产品和用户信息,评级和文本审核。
Google Books Ngrams:Google Books中的一系列文字。
Blogger Corpus:收集了来自blogger.com的681,288篇博文,每篇博文至少包含200个常用英语单词。
维基百科链接数据:维基百科的全文,包含来自400多万篇文章的近19亿个单词,可以按段落、短语或段落本身的一部分进行搜索。
Gutenberg电子书列表:Gutenberg项目中带注释的电子书书单。
Hansards加拿大议会文本:来自第36届加拿大议会记录的130万组文本。
Jeopardy:来自问答节目Jeopardy的超过200,000个问题的归档。
英文垃圾短信收集:由5574条英文垃圾短信组成的数据集。
Yelp评论:Yelp,就是美国的“大众点评”,这是他们发布的一个开放数据集,包含超过500万条评论。
UCI的Spambase:一个大型垃圾邮件数据集,对垃圾邮件过滤非常有用。
自动驾驶
Berkeley DeepDrive BDD100k:目前最大的自动驾驶数据集,包含超过100,000个视频,其中包括一天中不同时段和天气条件下超过1,100小时的驾驶体验。其中带注释的图像来自纽约和旧金山地区。
百度Apolloscapes:度娘的大型数据集,定义了26种不同物体,如汽车、自行车、行人、建筑物、路灯等。
Comma.ai:超过7小时的高速公路驾驶,细节包括汽车的速度、加速度、转向角和GPS坐标。
牛津的机器人汽车:这个数据集来自牛津的机器人汽车,它于一年时间内在英国牛津的同一条路上,反反复复跑了超过100次,捕捉了天气、交通和行人的不同组合,以及建筑和道路工程等长期变化。
城市景观数据集:一个大型数据集,记录50个不同城市的城市街景。
CSSAD数据集:此数据集对于自动驾驶车辆的感知和导航非常有用。不过,数据集严重偏向发达国家的道路。
KUL比利时交通标志数据集:来自比利时法兰德斯地区数以千计的实体交通标志的超过10000条注释。
MIT AGE Lab:在AgeLab收集的1,000多小时多传感器驾驶数据集的样本。
LISA:UC圣迭戈智能和安全汽车实验室的数据集,包括交通标志、车辆检测、交通信号灯和轨迹模式。
博世小交通灯数据集:用于深度学习的小型交通灯的数据集。
LaRa交通灯识别:巴黎的交通信号灯数据集。
WPI数据集:交通灯、行人和车道检测的数据集。
公共政府数据集
Data.gov:该网站可以从多个美国政府机构下载数据,包括各种奇怪的数据,从政府预算到考试分数都有。不过,其中大部分数据需要进一步研究。
食物环境地图集:本地食材如何影响美国饮食的数据。
学校财务系统:美国学校财务系统的调查。
慢性病数据:美国各地区慢性病指标数据。
美国国家教育统计中心:教育机构和教育人口统计数据,不仅有美国的数据,也有一些世界上其他地方的数据。
英国数据服务:英国最大的社会、经济和人口数据集。
数据美国:全面可视化的美国公共数据。
中国国家统计局:http://www.stats.gov.cn/
往期精彩回顾
适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑机器学习交流qq群955171419,加入微信群请扫码