自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2788)
  • 资源 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 在绘制图像的时候的参数的解释

这样,您将能够看到GADF数据的彩色图像,以及表示颜色映射与数据值关系的颜色条,并且图形的标题为“Gram-Angle Difference Field”。表示使用彩虹颜色映射,将不同的值映射为不同的颜色。其他常用的颜色映射包括 ‘gray’、‘viridis’、‘jet’ 等。用于在图形旁边添加一个颜色条(colorbar),用于说明颜色映射与数据值之间的关系。用于创建一个新的图形(figure)对象,可以包含一个或多个子图(axes)。: 要显示的数据,是一个二维数组。: 指定图像数据的原点位置。

2024-07-16 15:10:30 255

原创 将时序数据转化为格拉姆角差场数据【浅尝】

要将时间序列数据转换为格拉姆角差场(Gram-Angle Difference Field,GADF),需要使用一些数学转换。GADF 是一种将时间序列数据转换为图像的技术。

2024-07-16 15:08:32 376

原创 通过pandas库读取油压数据并可视化

要读取一个txt文件中的两列数据并将其可视化,您可以使用pandas库读取数据,并使用matplotlib库进行可视化。以下是一个示例代码,展示如何读取并可视化1.txt。

2024-07-16 14:57:53 413

原创 变负载和变转速

变负载是指在电力系统或机械系统中,负载随时间或操作条件的变化而发生变化的情况。简单来说,变负载就是负载不是恒定的,而是随着使用情况、环境条件等因素的变化而改变。在电力系统中,变负载通常指电力负荷的变化。例如,一个家庭的用电量会随时间、季节和使用电器的种类和数量而变化。在工业生产中,机器和设备的负荷也会随着生产任务的变化而变化。在机械系统中,变负载可能指设备在不同工作状态下的负荷变化。例如,汽车在加速、减速和匀速行驶时,发动机和传动系统所承受的负荷都是不同的。

2024-07-16 09:32:25 281

原创 通过油压信号观察GADF特征图的明显变化

油压信号的数据可以在GADF特征图中清晰地反映出各种变化,包括波峰、波谷、剧烈波动和较小震动。通过GADF特征图,可以更直观地分析和理解油压信号中的模式和特征,为故障诊断和性能监测提供有力支持。如果你有具体的油压信号数据,我可以帮助你生成相应的GADF特征图并进行分析。

2024-07-12 15:13:28 379

原创 油压能否作为一种信号?

油压作为一种信号具有重要的应用价值,特别是在工业监测和故障诊断领域。通过对油压信号的处理和分析,可以实现设备状态监测、故障诊断、预防性维护和系统性能优化等目标,提升系统的运行可靠性和效率。如果你有更多具体的问题或需要进一步的讨论,请告诉我。

2024-07-12 15:10:14 385

原创 【神经网络】SAE稀疏自编码器网络的感性认识

自编码器是一种神经网络,用于学习输入数据的低维表示(编码),再从这种表示中重构原始数据。编码器(Encoder):将输入数据转换为低维表示。解码器(Decoder):从低维表示重构原始数据。自编码器的目标是最小化输入数据与重构数据之间的差异,通常通过重建误差(例如均方误差)来衡量。稀疏自编码器(SAE)是一种强大的无监督学习方法,通过引入稀疏性约束,能够学习数据的稀疏特征表示。它在特征提取、降维、异常检测和数据去噪等方面具有广泛应用。通过合理设计和训练,SAE可以有效提高数据表示的质量和任务的性能。

2024-07-12 14:50:09 383

原创 在撰写学术论文的要秉持 完成大于完美这个原则

完成大于完美”这一理念在学术论文写作中尤为重要。

2024-07-12 10:41:52 237

原创 油压数据通过GADF来体现图像颜色深浅的对应关系

是的,Gram-Angle Difference Field (GADF) 是一种将时间序列数据转换为二维图像的方法,可以用来提取和展示时间序列数据中的时序特征。这种方法不仅适用于振动信号,也适用于油压数据等其他类型的时间序列数据。GADF 的主要优点是它能够在二维图像中保留时间序列数据的时序信息和模式,这些信息在原始一维数据中可能不容易观察到。通过转换为二维图像,可以更直观地观察数据中的特征,如波峰、波谷等。

2024-07-12 09:25:34 280

原创 深度监督机制的学术认识

深度监督(Deep Supervision)机制是一种在训练深层神经网络时,通过在网络的中间层引入额外的监督信号,以加速训练过程、改善梯度传播、并提高模型性能的方法。深度监督机制旨在缓解深层网络中常见的梯度消失问题,使得中间层在训练过程中能够更有效地学习有用特征。

2024-07-12 09:22:41 689

原创 柱塞泵和滚动轴承这两种机械设备有何相通之处?

总结来说,尽管柱塞泵和滚动轴承在具体应用和结构上有所不同,但在故障诊断的原理、技术方法和应用场景上有很多相通之处。这种共性使得在研究和实践中可以相互借鉴和融合,提高故障诊断的效率和准确性。

2024-07-12 09:11:31 227

原创 柱塞泵和滚动轴承的故障诊断有什么联系?

总之,柱塞泵和滚动轴承的故障诊断虽然在具体实现上有所不同,但在数据采集、信号处理、特征提取与模式识别等方面有许多共性和相互借鉴的地方。通过这些共性的技术和方法,可以有效地提高设备故障诊断的准确性和可靠性。柱塞泵和滚动轴承的故障诊断在工业设备维护中都有重要地位。

2024-07-12 09:10:29 151

原创 【排版学习】通栏图排版和分图排版

在文档排版和设计中,通栏图排版和分图排版是两种常见的图片布局方式。

2024-07-10 09:10:27 516

原创 数据项中小数点对齐, 留千分空 是什么意思?

这是指在展示数值数据时,将所有数值的小数点对齐,以便于对比不同数值的大小。:这意味着在展示较大数值时,每隔三位数字使用一个分隔符(通常是逗号)来提高可读性。这样可以确保各个数值的小数点在同一垂直线上,使得数据更加整齐易读。这可以帮助人们更容易地阅读和理解大数值。这样处理后的数据更加整齐和容易阅读。

2024-07-10 09:09:49 352

原创 【思路准备】使用DS-DSCNN和格拉姆角差场对转辙机油压信号进行故障诊断

数据转换:将转辙机的油压信号转换为图像数据,使得可以利用卷积神经网络进行处理。构建模型:使用DSCNN模型进行特征提取和分类,并引入深度监督来改进训练效果。训练模型:利用训练数据进行模型训练,优化主损失和辅助损失。故障诊断:利用训练好的模型对新数据进行预测,实现故障诊断。这种方法结合了深度监督和DSCNN的优势,可以有效提高转辙机故障诊断的准确性和效率。

2024-07-09 15:39:16 470

原创 深度监督的一些数学公式推导及其在深度学习中的使用

假设一个深度神经网络包含 (L) 层,第 ( l ) 层的输出表示为 ( h_l ),主输出层的损失函数为 ( \mathcal{L}其中,( N ) 是样本数量,( y_n ) 是真实标签,( \hat{y}_{n,l} ) 是第 ( l ) 层辅助分类器的预测值。其中,( W_{l} ) 是辅助分类器的权重,( b_{l} ) 是偏置,( h_{l} ) 是第 ( l ) 层的输出。在中间层 ( l_1, l_2, \ldots, l_k ) 引入辅助损失函数 ( \mathcal{L}

2024-07-09 15:37:09 980

原创 深度监督的理论学习策略

深度监督(Deep Supervision)是一种在深度学习中应用的策略,通过在神经网络的中间层添加辅助损失函数,来改进模型的训练过程和性能。深度监督的核心思想是通过引导网络的中间层学习有用的特征,来提升最终模型的收敛速度和准确性。这种方法最早由 Lee 等人在 2015 年的论文“Deeply-Supervised Nets”中提出。

2024-07-09 15:34:24 394

原创 YOLOv5的训练日志能看出什么?

您的训练已经开始,第一个epoch已经完成了部分进度(大约完成了24%),每个epoch的进度以及GPU内存使用情况也在日志中显示。综上所述,您可以继续监视训练的进度和性能指标,确保模型在每个epoch都有适当的学习,并根据训练过程中的日志调整需要的参数和策略。: 显示了用于训练的超参数设置,例如学习率、动量、权重衰减等。: 日志中显示了自动锚点分析的结果,这有助于优化目标检测任务中的锚点设置,以提高模型的检测性能。目录中,这包括模型权重、训练指标、TensorBoard日志等。

2024-07-09 12:10:01 138

原创 实例级权重调整的感性认识

实例级权重策略(Instance-level Weighting Strategy)是指在机器学习或统计建模中,针对每个数据点(实例)单独调整其在模型训练中的重要性或权重的策略。:在领域适应或迁移学习中,不同领域或来源的数据可能有不同的分布或重要性,实例级权重策略可以根据数据的来源或领域属性调整权重,提升模型的泛化能力。:当数据集中不同类别或样本的分布不均衡时,可以通过实例级权重策略来给予少数类别或重要样本更大的权重,以平衡模型对不同类别或样本的关注程度。

2024-07-09 10:31:55 623

原创 对比学习的感性认识

对比学习可以是无监督的(例如通过自监督学习从数据中学习特征表示),也可以是半监督的(例如在半监督对比学习中,利用带标签的数据来增强学习过程)。:对比学习已被广泛应用于自然语言处理(如学习词嵌入)、计算机视觉(如图像表示学习)、推荐系统(如学习用户和物品的表示)、和许多其他领域中。总之,对比学习通过利用数据中的相似性和差异性来学习有效的特征表示,是一种强大的学习范式,能够在许多领域中提升模型性能和泛化能力。:对比学习中,通常会构建正样本对和负样本对。正样本对包含相似的样本,而负样本对则包含不相似的样本。

2024-07-09 10:30:34 292

原创 【创新点2雏形】基于格拉姆角差场和深度监督可分离神经网络的转辙机故障诊断方法

将油压信号转换为图像数据,再利用 DSCNN-DS 和深度监督策略进行故障诊断,可以充分利用图像处理和深度学习的优势,提高故障诊断的精度和鲁棒性。

2024-07-09 09:53:17 345

原创 DSLN深度残差神经网络的感性认识

DRLN (Deformable Residual Learning Network) 是一种用于图像超分辨率(Image Super-Resolution)任务的深度学习模型。它通过结合残差学习和可变形卷积,提升了模型在处理图像细节和复杂结构上的能力。综上所述,DRLN 通过结合残差学习和可变形卷积,显著提升了图像超分辨率任务中的性能,能够更好地处理图像中的复杂结构和细节。

2024-07-09 09:48:06 407

原创 深度监督的感性认识

深度监督(Deep Supervision)是一种训练深度神经网络的方法,旨在通过在网络的中间层和输出层引入多个监督信号(即目标函数),来促进更深层次的特征学习和提高训练过程的稳定性。传统的深度神经网络通常只在最终输出层引入监督信号,而深度监督则在网络的不同层次引入多个辅助监督信号,从而有效缓解梯度消失问题,并加速模型收敛。深度监督的关键点在于通过在网络的中间层引入辅助损失函数,使得这些中间层在训练过程中也能够得到明确的指导,从而学到更有意义的特征表示。

2024-07-09 09:47:03 209

原创 使用深度监督策略来对你的模型进行优化

深度监督策略是一种模型优化的方法,旨在通过在模型的中间层添加辅助监督信号,来帮助模型在训练过程中更好地学习。它不仅仅是一个优化策略,更是一种训练方法,能够提供更多的监督信号,从而加速模型收敛,改善模型性能。:在模型的中间层添加辅助分类器,为中间层的特征提供直接的监督信号,而不仅仅依赖于最后一层的监督信号。这种多级监督可以帮助中间层更好地学习特征表示,避免信息在深层网络中逐渐丢失。:由于每一层都有直接的监督信号,梯度在反向传播时更稳定,有助于加速模型的收敛速度。

2024-07-09 09:45:54 424

原创 【手肘法】是解决生活和工作中问题的一种方法

这种方法的名称可能源自“拐弯抹角”的形象化描述,因为手肘不是直接参与到任务中的部位,但通过一些间接的动作,手肘依然可以发挥作用。因此,使用“手肘法”来处理问题通常意味着绕过直接路径,找到替代方案或者采用某种巧妙的手段来解决问题。“手肘法”通常是指一种在日常生活或工作中,通过某种隐晦或不直接的方式处理问题的方法。这种方法通常不走常规路径,而是利用一些“曲线救国”的策略或技巧来达到目的。使用“手肘法”可以在很多情况下帮助人们巧妙地应对挑战,避免直接冲突或减少阻力。

2024-07-09 08:42:37 286

原创 SQLite数据库的感性认识

SQLite 是一种强大、灵活且易于使用的嵌入式数据库系统。它的轻量级和零配置特性使其成为许多应用程序的首选数据库解决方案。无论是移动应用、嵌入式设备,还是小型桌面应用,SQLite 都能提供高效可靠的数据存储和管理功能。

2024-07-06 10:11:07 674

原创 【代码学习】使用DTCWT进行信号分解并计算分量的能量熵值

111。

2024-07-06 08:29:30 241

原创 奇异值差分谱消噪的感性认识

奇异值分解(Singular Value Decomposition, SVD)是一种常用的矩阵分解技术,可以将一个矩阵分解为三个部分:一个正交矩阵、一个对角矩阵和一个正交矩阵的转置。奇异值差分谱消噪的主要思想是利用奇异值的特性,即大部分信号能量集中在较大的奇异值上,而较小的奇异值可能主要由噪声引起。:使用处理后的奇异值矩阵(Σ’)和原始的左奇异向量矩阵(U)和右奇异向量矩阵(V)重构信号矩阵。:对奇异值进行差分处理,通常是通过计算相邻奇异值之间的差异,从而找出较小的奇异值,这些奇异值可能主要由噪声引起。

2024-07-05 11:00:08 281

原创 使用小波变换来识别特定频率中的能量变化

具体来说,小波变换通过一系列小波函数的基函数,将信号分解成不同频率的子信号(尺度系数和小波系数)。在这个过程中,频率高的小波函数对应于信号中快速变化的部分,而频率低的小波函数对应于缓慢变化的部分。小波变换通常用于信号处理和图像处理中,它可以将信号或图像分解成不同尺度的频率成分。在特征提取方面,小波变换可以帮助我们识别信号或图像中的特定频率范围内的能量变化。总体来说,小波变换在特征提取中能够提供关于信号或图像频率特征的丰富信息,但是否是“能量特征”取决于具体的应用和分析目标。

2024-07-05 10:59:28 145

原创 Mobile_Resnet的感性认识

由 Microsoft 提出的残差网络,通过引入跳跃连接(skip connections)解决了深层神经网络训练中的梯度消失问题。ResNet 通过残差块(residual blocks)允许梯度直接向后传播,从而可以构建非常深的网络。MobileNet:由 Google 提出的轻量级神经网络架构,专为移动设备和嵌入式应用设计。MobileNet 使用深度可分离卷积(depthwise separable convolutions)来减少计算量和模型参数,从而提高效率。

2024-07-05 10:24:58 343

原创 复数小波包能量矩熵的可视化应用

出现这个错误是因为类只适用于离散小波,而'cmor'是连续小波。对于连续小波包变换,需要使用不同的方法来实现。以下是修正后的代码,使用连续小波变换(CWT)来替代小波包变换,并对结果进行可视化。

2024-07-04 09:07:54 290

原创 复数小波包能量矩熵的感性认识

复数小波包能量矩熵是一种用于信号处理和故障诊断的技术。它结合了复数小波包变换和能量矩熵方法,用于提取信号的特征,尤其适用于处理非平稳和非线性信号。

2024-07-04 09:02:24 349

原创 从聚类等高线判断聚类数据C在什么取值是最合适的

判断聚类数据 ( C ) 的最合适取值可以通过观察聚类等高线来进行初步评估。聚类等高线可以帮助我们直观地理解不同聚类数目下数据的分布和聚类效果。:观察聚类等高线的分离度和紧密度。合适的聚类数目 ( C ) 应该能够在保持簇内样本紧密度的同时,确保簇间样本的分离度较高。:每个聚类簇的边界应该尽可能清晰,避免重叠或者模糊的边界。这表明选择的聚类数目 ( C ) 能够有效地将数据分离成明显的簇。:每个聚类中心应该位于其相应簇的中心位置,并且簇的大小和形状应该合理。

2024-07-03 17:42:15 216

原创 聚类的数目C是事先不知道的?

此外,聚类数目的选择还受到数据特性、算法选择和评价指标的影响。:通过绘制不同聚类数目 ( C ) 下的评价指标(如SSE)或者其他聚类效果评价指标的变化曲线,找出曲线呈现拐点(肘部),该点通常可以作为最佳聚类数目的估计。:通过层次聚类分析得到的树状图(树状图)可以帮助确定适当的聚类数目,通过切割树状图来获得不同聚类数目下的聚类。:这些指数可以用来评估不同聚类数目 ( C ) 下的聚类效果,选择使得指数最小或最大的聚类数目。:计算不同聚类数目 ( C ) 下的轮廓系数,选择使得轮廓系数最大化的聚类数目。

2024-07-03 17:36:42 144

原创 聚类效果的评价指标?

这些指标可以根据实际情况选择合适的来评价聚类结果的质量和性能。在使用这些指标时,需要考虑数据的特点、聚类算法的适用性以及评价的目标和需求。评价聚类效果的指标可以帮助我们客观地衡量和比较不同聚类算法或不同参数设置下的聚类结果。

2024-07-03 17:33:36 242

原创 【创新点】FCM聚类结果作为KFCM算法的初始聚类中心优化

在聚类算法中,特别是基于中心的聚类方法(如FCM和KFCM),初始聚类中心的选择对于最终聚类结果的影响非常大。传统的FCM算法通常使用随机初始化来确定初始聚类中心,这可能会导致不稳定的聚类结果,因为不同的随机初始化可能会得到不同的聚类中心,进而影响最终的聚类结果。为了克服这一问题,提出在FCM聚类结果的基础上,将聚类中心作为KFCM算法的初始聚类中心进行迭代优化。:通过利用FCM的聚类中心作为初始点,可以提高算法的稳定性和一致性。

2024-07-03 17:31:59 226

原创 使用CEEMDAN进行信号分解

CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)是一种用于时序数据分析的分解方法,它能够将复杂的信号分解成一系列本征模态函数(IMFs)和一个残差。:第一个本征模态函数,通常代表信号中的高频分量或噪声成分。它捕捉的是数据中的快速变化部分。:第二个本征模态函数,频率略低于IMF1,通常代表信号中的较高频但低于IMF1的成分。:第三个本征模态函数,频率继续降低,代表中等频率的成分。

2024-07-03 17:17:07 406

原创 【相关系数】可以使用不同的方法来进行计算

因此,斯皮尔曼相关系数是用于衡量两个变量之间秩相关性的一种特定相关系数,而相关系数则是一个广义的术语,包含了多种不同类型的相关性测度。具体选择哪种相关系数取决于数据的类型和分析的目的。相关系数是一个广义的术语,用于衡量两个变量之间的相关性或依赖关系。然而,斯皮尔曼相关系数只是相关系数的一种特定形式。

2024-07-03 16:59:22 441

原创 为什么要使用聚类的方法?

综上所述,聚类方法在数据探索、模式识别、降维、异常检测、数据预处理、图像分割、文本分析和推荐系统等多个领域具有广泛应用,其主要目的是通过发现数据中的自然结构和模式,从而更好地理解和利用数据。聚类是一种无监督学习方法,用于将一组数据划分为若干子集或“簇”,使得同一个簇中的数据点在某种意义上尽可能相似,而不同簇中的数据点则尽可能不同。:聚类可以将高维数据简化为几个簇,每个簇可以看作是数据的一个代表,这有助于数据的降维和简化处理。例如,在市场分析中,可以通过聚类识别出不同的客户群体,从而制定针对性的营销策略。

2024-07-03 16:53:39 401

原创 对原始数据进行聚类方法分析

与核模糊聚类类似,但不涉及核技巧,可以用于处理数据中的模糊性和不确定性。:基于图论中的谱理论,通过数据的特征向量来进行聚类,适用于非凸形状的数据集。:根据数据点的密度来进行聚类,如DBSCAN(Density-Based Spatial Clustering of Applications with Noise),能够识别任意形状的聚类。:根据数据的层次结构进行聚类,可以产生层次化的聚类结果。:属于层次聚类的一种,从单个数据点开始,逐步将最接近的数据点合并为聚类。

2024-07-02 21:16:17 354

t-SNE绘图代码代码代码代码

t-SNE绘图代码代码代码代码

2024-01-30

对比消融实验绘图代码的

对比消融实验绘图代码的

2024-01-30

分类结果一维投影图的绘制代码

分类结果一维投影图的绘制代码

2024-01-30

drawCurve8.R

将各科成绩按60、70、80、90转化为优秀、良好、中等、及格、不及格五分制(上限不在内),画出各科成绩的饼图、群集条图、堆积条图、百分比堆积条图

2024-01-08

analysisData4567.R

从csv文件读取成绩并统计各科成绩均分,标准差; 5)计算各科成绩最高分、最低分并输出对应同学的学号; 6)计算各同学总分并输出总分由高到低的学号序列; 7)画出总分及各科成绩的直方图、箱图

2024-01-08

createData123.R

1. 随机产生50名同学的学号、数学、英语、统计学成绩,要求: 1)学号为G4201-G4250 2)成绩服从正态分布,且数学成绩在40-100分之间,英语成绩在50-100分之间,统计学成绩在40-100分之间,都为整数 3)将生成的学号成绩组成数据框,存入"自己学号score.csv"文件(要求有列名,比如学号、数学成绩、英语成绩、统计学成绩)。

2024-01-08

道岔(GJ).zip 的的 的 的

1源码 的

2023-01-16

矩阵A.pdf 66666666

矩阵A.pdf 66666666

2022-12-30

2022-2023随机过程NUC.pdf

2022-2023随机过程NUC.pdf

2022-12-30

2022-2023矩阵理论NUC.pdf

2022-2023矩阵理论NUC.pdf

2022-12-30

2022-2023矩阵理论复习.rar

NUC

2022-12-28

随机过程总结复习.doc

1

2022-12-28

SQLiteStudio.rar

SQLiteStudio.rar

2022-12-02

随机过程汪荣鑫第三章课后答案.pdf

随机过程汪荣鑫第三章课后答案.pdf

2022-11-23

随机过程汪荣鑫第二章答案.pdf

随机过程汪荣鑫第二章答案.pdf

2022-11-23

随机过程-汪荣鑫-第一章答案.pdf

随机过程-汪荣鑫-第一章答案.pdf

2022-11-23

HBase无脑安装.zip

HBase无脑安装.zip

2022-11-14

科技报告正文模板.doc

科技报告正文模板.doc

2022-11-14

科技报告封面及报告信息表.docx

科技报告封面及报告信息表.docx

2022-11-14

NUC机械工程测试技术课后作业答案

nuc机械工程课后作业答案

2022-11-10

Fault Diagnosis of Induction Motor Using Convoluti

Fault Diagnosis of Induction Motor Using Convoluti

2022-11-03

文献综述指南.pdf 关于文献的综述指南,查找学习等

文献综述指南.pdf 关于文献的综述指南,查找学习等

2022-10-26

廖雪峰练习SQL文件.sql

廖雪峰练习SQL文件.sql

2022-10-19

SourceTreeSetup-3.4.0.exe

SourceTreeSetup-3.4.0.exe

2022-10-15

ZhiyunTrans-setup7.7.4G.exe

ZhiyunTrans-setup7.7.4G.exe

2022-10-14

全球学术快报 Setup 0.2.26.exe

全球学术快报 Setup 0.2.26.exe

2022-10-10

MySQL8.0.11在Linux下的RMP.rar

MySQL8.0.11在Linux下的RMP.rar rpm就需要rpm的命令来安装

2022-10-10

eclipse-java-photon-R-linux-gtk-x86_64.tar

在Linux中安装eclipse,并配置hadoop的插件完成MapReduce程序的开发

2022-10-10

按分类查看WindowsAPI

WindowsAPI查看

2022-07-11

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除