物流运输

题目描述

 物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

输入描述

  第一行是四个整数n( 1 <= n <= 100 )、m( 1 <= m<= 20 )、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。
接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P(1 < P < m)、a、b(1 <= a <= b <= n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

输出描述

包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

范围

n( 1 <= n <= 100 )、m( 1 <= m<= 20 )

提示

样例说明样例说明

输入

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

输出

32

题意

有n个图,每个图有些点不能走,当一个图的路径和前一个图的路径不同时,增加k的代价,求最小代价

分析

设 ans(i,j)表示从i到j这几天内路径不变的一天的代价,f[i]表示到第i天的最小总代价
f[i]=min{f[j]+ans(j+1,i)*(i-j),ans(1,i)*i}(1<=j<i)

标程

#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
using namespace std;
long long n,m,K,e,tot=0;
bool bd[110][21];
long long last[30];
long long s[110];
long long sx[110][20];
struct no
{
    long long x,y,s;
}a[2010];
bool qwer(no x,no y)
{
    return x.x<y.x;
}
void init()
{
    memset(bd,true,sizeof(bd));
    scanf("%lld%lld%lld%lld",&n,&m,&K,&e);
    long long x,y,s;
    for(long long i=1;i<=e;i++)
    {
        scanf("%lld%lld%lld",&x,&y,&s);
        a[++tot].x=x;
        a[tot].y=y;
        a[tot].s=s;
        a[++tot].y=x;
        a[tot].x=y;
        a[tot].s=s;
    }
    sort(a+1,a+1+tot,qwer);
    for(long long i=tot;i>=1;i--)
        last[a[i].x]=i;
    long long d;
    scanf("%lld",&d);
    for(long long i=1;i<=d;i++)
    {
        scanf("%lld%lld%lld",&s,&x,&y);
        for(long long i=x;i<=y;i++)
            bd[i][s]=false;
    }
}
long long spfa(long long x,long long y)
{
    long long d[100000];
    bool b[30],bb[30];
    memset(bb,true,sizeof(bb));
    for(long long i=x;i<=y;i++)
        for(long long j=1;j<=m;j++)
            if(bd[i][j]==false)
                bb[j]=false;
    long long h=1,t=1;
    long long dis[30];
    for(long long i=1;i<=m;i++)
        dis[i]=1000000000;
    dis[1]=0;
    dis[1]=0;
    memset(b,true,sizeof(b));
    d[1]=1;
    b[1]=false;
    while(h<=t)
    {
        long long w=d[h];
        for(long long i=last[w];a[i].x==w;i++)
        {
            long long q=a[i].y;
            if(dis[q]>dis[w]+a[i].s)
            {
                dis[q]=dis[w]+a[i].s;
                if(bb[q]&&b[q])
                {
                    d[++t]=q;
                    b[q]=false;
                }
            }
        }
        b[w]=true;
        h++;
    }
    return dis[m]; 
}
void work()
{
    long long f[110];
    for(int i=1;i<=n;i++)
    f[i]=2100000000;
        f[1]=spfa(1,1);
    for(long long i=2;i<=n;i++)
    {
        f[i]=spfa(1,i)*i;
        for(long long j=1;j<i;j++)
        {
            f[i]=min(f[i],f[j]+spfa(j+1,i)*(i-j)+K);
        }
    }
    printf("%lld",f[n]);
}
int main()
{
    init();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值