SDOI2014旅行

题意:有一棵树,每个节点有两个值(一个是种类,一个是价值)
有四个操作
1、修改某点的种类。
2、修改某点的价值。
3、给出两个点(种类相同),求这两点之间路径上和他们种类相同的点的最大价值

4、给出两个点(种类相同),求这两点之间路径上和他们种类



这个题敲了整整一天啊,一开始不太明白动态开点什么意思,最后终于明白了,然后无情的被T了一片一片的,终于A了,好开心!!!

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int maxn = 100005;
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int N,M,tot;
int edge_cnt,head[maxn],value[maxn],level[maxn];
struct Edge{
	int to,next;
}edge[maxn<<1];
inline void ADD(int u,int v){
	edge[edge_cnt].to = v;
	edge[edge_cnt].next = head[u];
	head[u] = edge_cnt++;
}
int size[maxn],son[maxn],fa[maxn],deep[maxn];
inline void dfs1(int now,int father,int Deep){
	size[now] = 1;
	fa[now] = father;
	deep[now] = Deep;
	son[now] = 0;
	for(int i = head[now]; ~i; i = edge[i].next){
		int v = edge[i].to;
		if(v != father){
			dfs1(v,now,Deep+1);
			size[now] += size[v];
			if(size[son[now]] < size[v])
				son[now] = v;
		}
	}
}
int top[maxn],Rank[maxn],ID[maxn];
inline void dfs2(int now,int Top){
	top[now] = Top;
	ID[now] = ++tot;
	Rank[ID[now]] = now;
	if(son[now])
		dfs2(son[now],Top);
	for(int i = head[now]; ~i; i = edge[i].next){
		int v = edge[i].to;
		if(v != fa[now] && v != son[now]){
			dfs2(v,v);
		}
	}
}
int cnt,lson[10000005],rson[10000005],root[maxn],sum[10000005],mx[10000005];
struct SGT{
	inline void pushUp(int now){
		mx[now] = max(mx[lson[now]],mx[rson[now]]);
		sum[now] = sum[lson[now]]+sum[rson[now]];
	}
	inline void update(int &now,int l,int r,int idx,int val){
		if(!now)now = ++cnt;
		if(l == r){
			mx[now] = sum[now] = val;
			return;
		}
		int Mid = (l+r)>>1;
		if(idx <= Mid)
			update(lson[now],l,Mid,idx,val);
		else
			update(rson[now],Mid+1,r,idx,val);
		pushUp(now);
	}
	inline int askmx(int now,int l,int r,int x,int y) {
	    if(!now)return 0;
	    if(x<=l && r<=y)return mx[now];
	    int Mid=(l+r)>>1;
	    int Max = 0;
	    if(x <= Mid)
	        Max = max(Max,askmx(lson[now],l,Mid,x,y));
	    if(Mid < y)
	        Max = max(Max,askmx(rson[now],Mid+1,r,x,y));
	    return Max;
	}
	inline int asksum(int now,int l,int r,int x,int y) {
	    if(!now)return 0;
	    if(x<=l && r<=y)return sum[now];
	    int mid=(l+r)>>1;
	    int ans = 0;
	    if(x <= mid)
	        ans += asksum(lson[now],l,mid,x,y);
	    if(mid < y)
	        ans += asksum(rson[now],mid+1,r,x,y);
	    return ans;
	}
};
SGT sgt;
int work_sum(int now,int u,int v){
	int ans = 0;
	int tpu = top[u];
	int tpv = top[v];
	while(tpu != tpv){
		if(deep[tpu] < deep[tpv]){
			swap(u,v);
			swap(tpu,tpv);
		}
		ans += sgt.asksum(root[now],1,N,ID[tpu],ID[u]);
		u = fa[tpu];
		tpu = top[u];
	}
	if(deep[u] > deep[v])
		swap(u,v);
	ans += sgt.asksum(root[now],1,N,ID[u],ID[v]);
	return ans;
}
int work_max(int now,int u,int v){
	int ans = 0;
	int tpu = top[u];
	int tpv = top[v];
	while(tpu != tpv){
		if(deep[tpu] < deep[tpv]){
			swap(u,v);
			swap(tpu,tpv);
		}
		ans = max(ans,sgt.askmx(root[now],1,N,ID[tpu],ID[u]));
		u = fa[tpu];
		tpu = top[u];
	}
	if(deep[u] > deep[v])
		swap(u,v);
	ans = max(ans,sgt.askmx(root[now],1,N,ID[u],ID[v]));
	return ans;
}
int main(){
	N = read();
	M = read();
	memset(head,-1,sizeof(head));
	edge_cnt = tot = cnt = 0;
	for(int i = 1; i <= N; i++){
		value[i] = read();
		level[i] = read();
	}
	int u,v;
	for(int i = 1; i < N; i++){
		u = read();
		v = read();
		ADD(u,v);
		ADD(v,u);
	}
	dfs1(1,0,0);
	dfs2(1,1);
	for(int i = 1; i <= N; i++)
		sgt.update(root[level[i]],1,N,ID[i],value[i]);
	char op[10];
	while(M--){
		scanf("%s",op);
		u = read();
		v = read();
		if(op[0] == 'C'){
			if(op[1] == 'C'){
				sgt.update(root[level[u]],1,N,ID[u],0);
				level[u] = v;
				sgt.update(root[level[u]],1,N,ID[u],value[u]);
			}
			else{
				sgt.update(root[level[u]],1,N,ID[u],v);
				value[u] = v;
			}
		}
		else{
			if(op[1] == 'S')
				printf("%d\n",work_sum(level[u],u,v));
			else
				printf("%d\n",work_max(level[u],u,v));
		}
	}
	return 0;
}

相同的点的价值之和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值