ViewDragHelper

ViewDragHelper:
  在侧滑菜单中,都会用到一个类: ViewDragHelper.v4包中的类,2013年 google i/o大会上提出,用来解决控件拖动的问题,简化android中手势滑动操作。
  v4包中的DrawerLayout和SlidingPaneLayout内部都使用到了ViewDragHelper。
  在自定义中写一个 ViewDragHelper 的实例( ViewDragHelper.create(this,mCallBack);),传入一个回调对象 new CallBack();在 CallBack 中一般要重写这几个方法:

 1.tryCaptureView: 是否要捕获(capture)子控件, 返回true则表示捕获,捕获了则可以实现拖动
 2.clampViewPositionHorizontal:设置控件水平方向将要显示的位置,以控件的左边界来确定位置(clamp:固定住)
 3.onViewPositionChanged:当子控件位置发生改变时,调用.
 4.getViewHorizontalDragRange:返回子控件水平方向拖动的最大范围(Range: 范围),注意:实际上并不会真正限制子控件拖动的范围.
  
作用:
          (a) 当子控件消费事件时,此方法需要返回大于0的值,子控件才可以实现拖动, 默认返回0则不可以拖动
         (b) 用来确定拖动结束后动画执行时长(了解)
  如果想要真正控制子控件拖动的范围,可以在clampViewPositionHorizontal方法中设置:
 5.onViewReleased:拖动控件时移动,松开手后将调用该方法.
在自定义控件中一般还要重写的方法:

 1.onInterceptTouchEvent:拦截事件.一般交给 ViewDragHelper 对象决定是否拦截:return mViewDragHelper.shouldInterceptTouchEvent(ev);
 2.onTouchEvent:把触摸事件交给ViewDragHelper处理.mViewDragHelper.processTouchEvent(event);而且要注意的是结果要 return true,

把事件给消费掉.因为 点击,滑动,抬起 这三个动作是一组事件,返回 true ,把该事件消费掉才能把该整组事件执行完;如果返回 false,没有消费该事件
则只会执行 点击 这一事件,然后传递给下一个事件, 滑动 , 抬起 将不会执行.
 
 ViewDragHandler 的平滑移动:mViewDragHelper.smoothSlideViewTo(viewChild,width,heigth);
然后要刷新动画:ViewCompat.postInvalidateOnAnimation(this);然后重写 computeScroll方法.在该方法里面判断 mViewDragHandler 是不是
继续设置动作,参数为 true,表示继续,然后再刷新.
因为 ViewCompat 调用 postInvalidateOnAnimation(this) 方法,其实在里面走的流程为 invalidate -> onDraw() -> computeScroll()
例子:
 private void open(){
        mViewDragHelper.smoothSlideViewTo(mContentView,-mMenuWidth,0);
        // 刷新界面: invalidate -> onDraw() -> computeScroll()
        ViewCompat.postInvalidateOnAnimation(this);
    }
  @Override
    public void computeScroll() {
        if(mViewDragHelper.continueSettling(true)){
            ViewCompat.postInvalidateOnAnimation(this);
        }
    }
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值