ubuntu16.04 cuda10和cudnn7.6下载安装

深度学习 同时被 3 个专栏收录
19 篇文章 0 订阅
20 篇文章 0 订阅
21 篇文章 0 订阅

深度学习框架配置和实践

显卡驱动没有安装按照右面教程进行安装-显卡驱动安装教程

链接:https://developer.nvidia.com/cuda-downloads

cuda和cudnn解释:https://www.jianshu.com/p/622f47f94784

大家注意一下:

下载之前查看自己显卡驱动和cuda版本号之间的关系,如下图所示,然后进行选择性安装。

https://blog.csdn.net/fengxinzioo/article/details/101679140

nvidia驱动版本号:nvidia-smi进行查看,如下图红色框标出来所示:

cuda下载https://developer.nvidia.com/cuda-toolkit-archive

cudnn下载

cudnn链接:https://developer.nvidia.com/cudnn

一、安装cuda

链接:https://www.cnblogs.com/xuliangxing/p/7575586.html

1、安装缺失的依赖库文件

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libgl1-mesa-dev libglu1-mesa libglu1-mesa-dev libxi-dev

2、安装执行文件

sudo sh cuda_10.0.130_410.48_linux.run  #执行安装文件

按q键跳过读取这些条款

3、安装过程

Do you accept the previously read EULA?
accept/decline/quit: accept

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?
(y)es/(n)o/(q)uit: n 一定要选择NO

Install the CUDA 10.0 Toolkit?
(y)es/(n)o/(q)uit: y
Enter Toolkit Location
 [ default is /usr/local/cuda-10.0 ]: 

Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y

Install the CUDA 10.0 Samples?
(y)es/(n)o/(q)uit: y

Enter CUDA Samples Location
 [ default is /home/bubble ]: 

Installing the CUDA Toolkit in /usr/local/cuda-10.0 ...
Installing the CUDA Samples in /home/bubble ...
Copying samples to /home/bubble/NVIDIA_CUDA-10.0_Samples now...
Finished copying samples.

===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-10.0
Samples:  Installed in /home/bubble

Please make sure that
 -   PATH includes /usr/local/cuda-10.0/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-10.0/lib64, or, add /usr/local/cuda-10.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-10.0/bin

Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-10.0/doc/pdf for detailed information on setting up CUDA.

***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 10.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run -silent -driver

Logfile is /tmp/cuda_install_17026.log

4、设置环境变量

输入命令,编辑环境变量配置文件

sudo vim ~/.bashrc

在文本末端追加以下两行代码(按键“i”进行编辑操作---根据自己cuda版本号进行修改cuda-10.0)

export PATH=/usr/local/cuda-10.0/bin:$PATH 
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda

保存退出(按“!wq”),执行下面命令,使环境变量立刻生效

#环境变量立即生效 
sudo source ~/.bashrc#如果提示source命令找不到可以忽略执行下一个
sudo ldconfig 

5、检查cuda是否配置正确

  到这一步,基本的CUDA已经安装完成了,我们可以通过以下命令查看CUDA是否配置正确.必须关闭当前终端,重新打开一个终端

nvcc --version

     如图所示:

6、测试CUDA的sammples

为什么需要安装cuda samples?一方面为了后面学习cuda使用,另一方面,可以检验cuda是否真的安装成功。如果cuda samples全部编译通过,没有一个Error信息(Warning忽略),那么就说明成功地安装了cuda。如果最后一行虽然显示PASS,但是编译过程中有ERROR,请自行网上搜索相关错误信息解决之后。

# 切换到cuda-samples所在目录
cd /usr/local/cuda-10.0/samples 或者 cd ~/NVIDIA_CUDA-10.0_Samples 
# 没有make,先安装命令 sudo apt-get install cmake,-j是最大限度的使用cpu编译,加快编译的速度
make –j
# 编译完毕,切换release目录(/usr/local/cuda-8.0/samples/bin/x86_64/linux/release完整目录)
cd ./bin/x86_64/linux/release

# 检验是否成功,运行实例
./deviceQuery 

# 可以认真看看自行结果,它显示了你的NVIDIA显卡的相关信息,最后能看到Result = PASS就算成功。

如下图所示:

二、安装cuDNN

安装cudnn比较简单,简单地说,就是复制几个文件:库文件和头文件。将cudnn的头文件复制到cuda安装路径的include路径下,将cudnn的库文件复制到cuda安装路径的lib64路径下。安装cudnn中更新软链接步骤,版本号在cudnn解压出来的cuda文件中lib64中查看,具体操作如下:

 

#解压文件,cd到cudnn路径下
 tar -xzvf cudnn-10.0-linux-x64-v7.6.0.64.tgz
 #切换到刚刚解压出来的文件夹路径
 cd cuda 
 #复制include里的头文件(记得转到include文件里执行下面命令)
 cd ./include
sudo cp cudnn.h  /usr/local/cuda/include/
 #复制lib64下的lib文件到cuda安装路径下的lib64(记得转到lib64文件里执行下面命令)
cd ../lib64
sudo cp lib*  /usr/local/cuda/lib64/
#设置权限
sudo chmod a+r /usr/local/cuda/include/cudnn.h 
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
#======更新软连接======
cd /usr/local/cuda/lib64/ 
sudo rm -rf libcudnn.so libcudnn.so.7   #删除原有动态文件,版本号注意变化,可在cudnn的lib64文件夹中查看   
sudo ln -s libcudnn.so.7.6.0 libcudnn.so.7  #生成软衔接(注意这里要和自己下载的cudnn版本对应,可以在/usr/local/cuda/lib64下查看自己libcudnn的版本)
sudo ln -s libcudnn.so.7 libcudnn.so #生成软链接
sudo ldconfig -v #立刻生效

最后我们看看验证安装cudnn后cuda是否依旧可用

nvcc --version  # or nvcc -V

软链接命令那地方解释说明一下:

这句命令执行之前sudo rm -rf libcudnn.so libcudnn.so.7   #删除原有动态文件,版本号注意变化,可在cudnn的lib64文件夹中查看

/usr/local/cuda/lib64/下面libcudnn.so动态库如下图,其中libcudnn.so.7.6.0是我们最终要建立的软连接

sudo rm -rf libcudnn.so libcudnn.so.7这句命令之后,把libcudnn.so libcudnn.so.7删掉了,只剩下libcudnn.so.7.6.0如下图所示

sudo ln -s libcudnn.so.7.6.0 libcudnn.so.7 这句命令之后,如下图所示

sudo ln -s libcudnn.so.7 libcudnn.so这句命令之后,如下图所示:

  • 5
    点赞
  • 0
    评论
  • 25
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值