ML
文章平均质量分 86
Machine Learning, Miscellaneous
0xFACE
热爱IT,热爱科技,热爱自然。也爱mm.
展开
-
Metropolis-Hasting抽样算法
目录Metropolis-Hasting抽样算法1. 随机模拟的基本思想2. 拒绝抽样3. Metropolis-Hastings抽样3.1 引入思想3.2 理论基础:细致平稳条件3.3 M-H算法实现3.4 算法升级3.5 仿真实验Metropolis-Hasting抽样算法1. 随机模拟的基本思想假设我们有一个矩形区域RRR,面积为S0S_0S0。在此区域中,有一个不规则区域MMM,其面积SSS待求。方法1:把不规则区域MMM划分为多个小的规则区域,由这些规则区域的面积总和S′S'S′近似。原创 2021-07-30 17:43:00 · 3752 阅读 · 2 评论 -
MLE(极大似然估计)与MAP(最大后验估计)
目录MLE (Maximum Likelihood Estimation)MAP (Maximum A Posteriori)p(x∣θ)p(x|\theta)p(x∣θ)若 θ\thetaθ是确定值,xxx是变量,则p(x∣θ)p(x|\theta)p(x∣θ)描述了不同的X=xX=xX=x出现的概率 --> 概率函数 probability若 θ\thetaθ是变量,xxx是已知数据,则p(x∣θ)p(x|\theta)p(x∣θ)描述了不同的模型参数下出现这个xxx的概率 --> 似原创 2021-07-21 18:39:53 · 320 阅读 · 0 评论 -
Radon变换及其Matlab代码实现
Radon变换和Hough变换类似,最初适用于检测图像中的直线(例如笔直的街道边沿、房屋的边沿、笔直的电线等)。关于Hough变换,可以参考OpenCV中的代码和示例(其实除了Hough Lines还有Hough Circles等等变种),此处不再赘述。关于Radon变换,可以参考wiki或者百科,或者网络上的其他资料介绍。这里做一个简单的总结。首先准备一张灰度化的图像,及黑白图像原创 2014-12-11 21:36:27 · 38469 阅读 · 16 评论