接上回
还有两种方法可实现:
方法二:
from wordcloud import WordCloud
import jieba
from PIL import Image
#获取文本信息
f = open("D:\python\红楼梦.txt", "r", encoding='utf-8')
txt = f.read() #把读取到的txt内容存放到变量txt里面
f.close()
words_temp= jieba.lcut(txt) #精确切分词语
words = []
#读取停用词
with open("D:\python\stop_words.txt","r",encoding='utf-8') as fp:
stopwords = fp.read()
"""去掉切分词语中的停用词"""
for w in words_temp:
if w not in stopwords:
words.append(w)
##############
#词云图的设置
newtxt = "".join(words)
font = "C:\Windows\Fonts\AdobeHeitiStd-Regular.otf" #电脑自带的C盘里的字体
wordcloud = WordCloud(background_color="white",
width=800,
height=600,
max_words=100, #显示词的最大个数,默认为200
font_path = font,#设置字体路径
max_font_size=80, #设置字体的大小,即词云的高度
stopwords=stopwords
).generate(newtxt)
# self.font = core.getfont(
# OSError: cannot open resource
# 指定文字路径错误font_path 默认不支持中文,所以需要设置,
# wordcloud.to_file("红楼梦词云.png") #默认的词云库的样式
img = Image.open('红楼梦词云.png')
img.show()
发现生成的词汇有“道”太多了
针对停用词要优化一下
方法三:目前最好的
import re # 正则表达式库
import collections # 词频统计库
import numpy as np # numpy数据处理库
import jieba # 结巴分词
import wordcloud # 词云展示库
from PIL import Image # 图像处理库
import matplotlib.pyplot as plt # 图像展示库
# 读取文件
fn = open('D:\python\红楼梦.txt',"r",encoding='utf-8') # 打开文件
string_data = fn.read() # 读出整个文件
fn.close() # 关闭文件
# 文本预处理
pattern = re.compile(u'\t|\n|\.|-|:|;|\)|\(|\?|"') # 定义正则表达式匹配模式
string_data = re.sub(pattern, '', string_data) # 将符合模式的字符去除
# 文本分词
seg_list_exact = jieba.cut(string_data, cut_all = False) # 精确模式分词
object_list = []
# 自定义去除词库
f1 = open("D:\python\stop_words.txt","r",encoding='utf-8')
remove_words = f1.read() #把读取到的txt内容存放到变量txt里面
f1.close()
# remove_words = [u'的', u',',u'和', u'是', u'随着', u'对于', u'对',u'等',u'能',u'都',u'。',u' ',u'、',u'中',u'在',u'了',
# u'通常',u'如果',u'我们',u'需要']
for word in seg_list_exact: # 循环读出每个分词
if word not in remove_words: # 如果不在去除词库中
object_list.append(word) # 分词追加到列表
# 词频统计
word_counts = collections.Counter(object_list) # 对分词做词频统计
word_counts_top10 = word_counts.most_common(10) # 获取前10最高频的词
print ("top10的词汇",word_counts_top10) # 输出检查
# 词频展示
# mask = np.array(Image.open("C:/Users/lenovo/Desktop/girl.jpg")) # 定义词频背景,将地址里的\变为/可运行
wc = wordcloud.WordCloud(
font_path='C:\Windows\Fonts\AdobeHeitiStd-Regular.otf', # 设置字体格式
max_words=200, # 最多显示词数
max_font_size=100 # 字体最大值
)
# width = 600,
# height = 700
wc.generate_from_frequencies(word_counts) # 从字典生成词云
# image_colors = wordcloud.ImageColorGenerator(mask) # 从背景图建立颜色方案
# wc.recolor(color_func=image_colors) # 将词云颜色设置为背景图方案
plt.imshow(wc) # 显示词云
plt.axis('off') # 关闭坐标轴
plt.show() # 显示图像
#wc.to_file("C:/Users/lenovo/Desktop/pic/6.png") #将词云输出为图像文件,.png或.jpg格式
经过优化停用词后生成的词云就比较符合了
另外本次遇到的问题有:
1,mask没有实现,遇到的问题是
ValueError: ImageColorGenerator is smaller than the canvas
生成词云的图片的宽和高要和mask设置一样,但是我设置成一样之后还出现这个问题,也不知道问题在哪里。
2、词云图片默认保存在C盘,但是要指定输出图片位置的话该怎么设置?
代码里好像有这句话,但是并没有用。