BUUCTF crypto [羊城杯]power

BUUCTF crypto [羊城杯]power
这道题主要复习了已知dp的一般解法,并且学习了离散对数相关用法。

题目

from Crypto.Util.number import *
import gmpy2
from secret import flag

p = getPrime(512)
q = getPrime(512)
n = p**4*q

e = 0x10001
phi = gmpy2.lcm(p - 1, q - 1)
d = gmpy2.invert(e, phi)
dp = d % (p - 1)
m = bytes_to_long(flag)
c = pow(m, e, n)
print "dp = " + str(dp)
print "c = " + str(c)

y = 449703347709287328982446812318870158230369688625894307953604074502413258045265502496365998383562119915565080518077360839705004058211784369656486678307007348691991136610142919372779782779111507129101110674559235388392082113417306002050124215904803026894400155194275424834577942500150410440057660679460918645357376095613079720172148302097893734034788458122333816759162605888879531594217661921547293164281934920669935417080156833072528358511807757748554348615957977663784762124746554638152693469580761002437793837094101338408017407251986116589240523625340964025531357446706263871843489143068620501020284421781243879675292060268876353250854369189182926055204229002568224846436918153245720514450234433170717311083868591477186061896282790880850797471658321324127334704438430354844770131980049668516350774939625369909869906362174015628078258039638111064842324979997867746404806457329528690722757322373158670827203350590809390932986616805533168714686834174965211242863201076482127152571774960580915318022303418111346406295217571564155573765371519749325922145875128395909112254242027512400564855444101325427710643212690768272048881411988830011985059218048684311349415764441760364762942692722834850287985399559042457470942580456516395188637916303814055777357738894264037988945951468416861647204658893837753361851667573185920779272635885127149348845064478121843462789367112698673780005436144393573832498203659056909233757206537514290993810628872250841862059672570704733990716282248839
g = 2
x = 2019*p**2 + 2020*p**3 + 2021*p**4
c1 = pow(g, x, y)
print "c1 = " + str(c1)

# dp = 3272293505696712831419859641571956066667516012597886098021642320155056349966612629986261146617139998624603483170466852538289743936225789351270153550594329
# c = 22524257534087703614496632403022329621384173069680778965750290698059674588465640878754707363673789674111671270645152584118206145007310499274423606886261969807360070526126452646719628307689968971699215841867636770320159256301550908771135042912287955209485328267670825390080110910391913063177323585204392804538642393453388536211144485389902591029350060800993352969569703901717308330574394200996651534321547814313195218895547718815009876393987398738932001924661338796059973950012706427109598830049455186171345179840564502215531573714428772608739268313985559628612004439028014417408631851880698512023740903181116906766066951473942201698375224240271523568161242951730224901227589413731025281719101368668617497947995579443908773425555177346524678673641140157885033923288401884
# c1 = 290707924192892686920253390955676600323331633814839708838347288502692494699485764473635783441705302268064111648851157070038783719749721994682837294625334517914882191486257362565066745587415388291939979195637720350919055988532145531805200483161599965215275808797976727969023747299578173497083532351976473770041800769265319548352841139802163279116490053292316399038329210043455932786945180855178341998049756983301499491011851026499269682821602212971062877270127451987836730083380463825717889123804613394241190839837791281657872259492589868751745327696030438893865069941066073554427558697972551085353027574529823439588670263047287131740802375738439636789806332323994866753085014446479034974063195632514803340511247735647970572837053148490258113394359072976858781060349776921428492973183958437965966963122069107876143476772436757554253049619918403996315720023020827394900507088006299225934263699192253079026440287311664705744424959801981503191480257138833694306501816837037995549817186335377411638035575004595417788588264823861850877111374085336446477943372458378834664678094751978400910288151519902977326995118727880223621964441498323865158898463327323193833062919619201107279964663654606753750042791368210261574897455830722232022689695292080269205470491791950839486861811469879413313773338916781857981641910031441448964144000585506870170898052132929034349451945051362244755750988705018897859238859476967568556992146975789444151432386692872801263000639711599152191790766776280

解法一:

已知
在这里插入图片描述

接下来就是爆破出来p。

已知,

g = 2
x = 2019*p**2 + 2020*p**3 + 2021*p**4
c1 = pow(g, x, y)
#c1 = 
#y = 

那么k从1到0x10001的遍历一遍,保留 ( e ∗ d p − 1 ) / / k + 1 (e*dp -1) // k + 1 (edp1)//k+1为质数的,代入上面的已知,就可以求出来p了。

代码

from Crypto.Util.number import *
from gmpy2 import *

dp = 3272293505696712831419859641571956066667516012597886098021642320155056349966612629986261146617139998624603483170466852538289743936225789351270153550594329
c = 22524257534087703614496632403022329621384173069680778965750290698059674588465640878754707363673789674111671270645152584118206145007310499274423606886261969807360070526126452646719628307689968971699215841867636770320159256301550908771135042912287955209485328267670825390080110910391913063177323585204392804538642393453388536211144485389902591029350060800993352969569703901717308330574394200996651534321547814313195218895547718815009876393987398738932001924661338796059973950012706427109598830049455186171345179840564502215531573714428772608739268313985559628612004439028014417408631851880698512023740903181116906766066951473942201698375224240271523568161242951730224901227589413731025281719101368668617497947995579443908773425555177346524678673641140157885033923288401884
c1 = 290707924192892686920253390955676600323331633814839708838347288502692494699485764473635783441705302268064111648851157070038783719749721994682837294625334517914882191486257362565066745587415388291939979195637720350919055988532145531805200483161599965215275808797976727969023747299578173497083532351976473770041800769265319548352841139802163279116490053292316399038329210043455932786945180855178341998049756983301499491011851026499269682821602212971062877270127451987836730083380463825717889123804613394241190839837791281657872259492589868751745327696030438893865069941066073554427558697972551085353027574529823439588670263047287131740802375738439636789806332323994866753085014446479034974063195632514803340511247735647970572837053148490258113394359072976858781060349776921428492973183958437965966963122069107876143476772436757554253049619918403996315720023020827394900507088006299225934263699192253079026440287311664705744424959801981503191480257138833694306501816837037995549817186335377411638035575004595417788588264823861850877111374085336446477943372458378834664678094751978400910288151519902977326995118727880223621964441498323865158898463327323193833062919619201107279964663654606753750042791368210261574897455830722232022689695292080269205470491791950839486861811469879413313773338916781857981641910031441448964144000585506870170898052132929034349451945051362244755750988705018897859238859476967568556992146975789444151432386692872801263000639711599152191790766776280
y = 449703347709287328982446812318870158230369688625894307953604074502413258045265502496365998383562119915565080518077360839705004058211784369656486678307007348691991136610142919372779782779111507129101110674559235388392082113417306002050124215904803026894400155194275424834577942500150410440057660679460918645357376095613079720172148302097893734034788458122333816759162605888879531594217661921547293164281934920669935417080156833072528358511807757748554348615957977663784762124746554638152693469580761002437793837094101338408017407251986116589240523625340964025531357446706263871843489143068620501020284421781243879675292060268876353250854369189182926055204229002568224846436918153245720514450234433170717311083868591477186061896282790880850797471658321324127334704438430354844770131980049668516350774939625369909869906362174015628078258039638111064842324979997867746404806457329528690722757322373158670827203350590809390932986616805533168714686834174965211242863201076482127152571774960580915318022303418111346406295217571564155573765371519749325922145875128395909112254242027512400564855444101325427710643212690768272048881411988830011985059218048684311349415764441760364762942692722834850287985399559042457470942580456516395188637916303814055777357738894264037988945951468416861647204658893837753361851667573185920779272635885127149348845064478121843462789367112698673780005436144393573832498203659056909233757206537514290993810628872250841862059672570704733990716282248839
g = 2
e = 0x10001
set_p = []

for i in range(1,0x10001):
	if isPrime((e * dp - 1) // i + 1):
		set_p.append((e * dp - 1) // i + 1)
p = 0
for i in set_p:
	p = i
	x = 2019*p**2 + 2020*p**3 + 2021*p**4
	c1_ = pow(g, x, y)
	if c1 == c1_:
		break

d = inverse(e, p - 1)
m = long_to_bytes(pow(c, d, p))
print(m)

解法二:

离散对数+z3求解p.

dp = 3272293505696712831419859641571956066667516012597886098021642320155056349966612629986261146617139998624603483170466852538289743936225789351270153550594329
c = 22524257534087703614496632403022329621384173069680778965750290698059674588465640878754707363673789674111671270645152584118206145007310499274423606886261969807360070526126452646719628307689968971699215841867636770320159256301550908771135042912287955209485328267670825390080110910391913063177323585204392804538642393453388536211144485389902591029350060800993352969569703901717308330574394200996651534321547814313195218895547718815009876393987398738932001924661338796059973950012706427109598830049455186171345179840564502215531573714428772608739268313985559628612004439028014417408631851880698512023740903181116906766066951473942201698375224240271523568161242951730224901227589413731025281719101368668617497947995579443908773425555177346524678673641140157885033923288401884
c1 = 290707924192892686920253390955676600323331633814839708838347288502692494699485764473635783441705302268064111648851157070038783719749721994682837294625334517914882191486257362565066745587415388291939979195637720350919055988532145531805200483161599965215275808797976727969023747299578173497083532351976473770041800769265319548352841139802163279116490053292316399038329210043455932786945180855178341998049756983301499491011851026499269682821602212971062877270127451987836730083380463825717889123804613394241190839837791281657872259492589868751745327696030438893865069941066073554427558697972551085353027574529823439588670263047287131740802375738439636789806332323994866753085014446479034974063195632514803340511247735647970572837053148490258113394359072976858781060349776921428492973183958437965966963122069107876143476772436757554253049619918403996315720023020827394900507088006299225934263699192253079026440287311664705744424959801981503191480257138833694306501816837037995549817186335377411638035575004595417788588264823861850877111374085336446477943372458378834664678094751978400910288151519902977326995118727880223621964441498323865158898463327323193833062919619201107279964663654606753750042791368210261574897455830722232022689695292080269205470491791950839486861811469879413313773338916781857981641910031441448964144000585506870170898052132929034349451945051362244755750988705018897859238859476967568556992146975789444151432386692872801263000639711599152191790766776280
y = 449703347709287328982446812318870158230369688625894307953604074502413258045265502496365998383562119915565080518077360839705004058211784369656486678307007348691991136610142919372779782779111507129101110674559235388392082113417306002050124215904803026894400155194275424834577942500150410440057660679460918645357376095613079720172148302097893734034788458122333816759162605888879531594217661921547293164281934920669935417080156833072528358511807757748554348615957977663784762124746554638152693469580761002437793837094101338408017407251986116589240523625340964025531357446706263871843489143068620501020284421781243879675292060268876353250854369189182926055204229002568224846436918153245720514450234433170717311083868591477186061896282790880850797471658321324127334704438430354844770131980049668516350774939625369909869906362174015628078258039638111064842324979997867746404806457329528690722757322373158670827203350590809390932986616805533168714686834174965211242863201076482127152571774960580915318022303418111346406295217571564155573765371519749325922145875128395909112254242027512400564855444101325427710643212690768272048881411988830011985059218048684311349415764441760364762942692722834850287985399559042457470942580456516395188637916303814055777357738894264037988945951468416861647204658893837753361851667573185920779272635885127149348845064478121843462789367112698673780005436144393573832498203659056909233757206537514290993810628872250841862059672570704733990716282248839
g = 2
print(discrete_log(c1, Mod(g,y))) #sage
#x = 5535722692962580764045545539105119140941061679289569420988353884209653851308860058948669740693107863231179565602072744542122031789184119031739723962825082929025825322421201364211726001366490949760887367407718763255964735567971493859197583624076478457865073449246835949075135223468616834636386958924709024763349115622062848212445867198457630368236782421195503713107838541903829979118327675371550868768159024260793541264335548489228744367609071659968450303895118817379316060805148754136917043160175570565717388336822960389664337656603584425629662613786203920234401824957121860225422901340950436355650311392398098947210940

在这里插入图片描述

得到x以后,利用z3求解。

from z3 import *
from Crypto.Util.number import *
#z3
#x = 5535722692962580764045545539105119140941061679289569420988353884209653851308860058948669740693107863231179565602072744542122031789184119031739723962825082929025825322421201364211726001366490949760887367407718763255964735567971493859197583624076478457865073449246835949075135223468616834636386958924709024763349115622062848212445867198457630368236782421195503713107838541903829979118327675371550868768159024260793541264335548489228744367609071659968450303895118817379316060805148754136917043160175570565717388336822960389664337656603584425629662613786203920234401824957121860225422901340950436355650311392398098947210940
p=Int('p')
s = Solver()
s.add(2019*p**2 + 2020*p**3 + 2021*p**4 == x)
s.check()
p = s.model().eval(p).as_long()
#p = 
d = inverse(65537, p - 1)
m = pow(c , d , p)
print(long_to_bytes(m))
#b'GWHT{f372e52f2a0918d92267ff78ff1a9f09}'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值