牛客练习赛49 solution

A

水题

B

有15本书,和15个价格,你要分配这15个价格,使得总价最小.

此外,有一些促销方案,每个方案是一些书的集合,表示只要买全了这个方案的书,则最便宜的一本书免费

你最后选择的所有方案不能有重复的书.

第一感觉就是状压dp 了

首先二进制枚举子集,对于每个当前状态,考虑可以从哪些状态转移过来,这时候再枚举他的子集,

时间复杂度看起来是$2^n * 2^n $ 实际上是 3 n 3^n 3n ,写法:

for(int sta=1;sta<(1<<n);++sta){
    for(int s = sta;s;s=(s-1)&sta){
        ... state transfer
    }
}

时间复杂度分析: C n 1 2 1 + C n 2 2 n + C n 3 2 3 + . . . + C n n 2 n = ( 2 + 1 ) n = 3 n C_n^12^1 + C_n^22^n + C_n^32^3 + ...+C_n^n2^n = (2+1)^n = 3^n Cn121+Cn22n+Cn323+...+Cnn2n=(2+1)n=3n

具体转移,考虑当前枚举的子集是否是某个促销方案,

如果不是,直接转移,很自然

如果是,这个时候,考虑能带来的收益,是整个sta的1的数量,尽量取大的,最小的那个.

为什么要看sta的1的数量呢?(而不是s),如果看了s,辣答案肯定偏大;如果看sta,这一次可能不是最大的,但总有一种方案能凑到可能最大的,

仔细体会一下…

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

int n,m;
int a[20];
int dp[1<<15];
bool vis[1<<15];

int main()
{
    ios::sync_with_stdio(false);
    cin>>n>>m;
    int sum = 0;
    for(int i=1;i<=n;++i){
        cin>>a[i];
        sum+=a[i];
    }
    sort(a+1,a+1+n);
    for(int i=1;i<=m;++i){
        int tp = 0, k=0, res=0;
        cin>>k;
        while(k--)
        {
            cin>>tp;
            res|=(1<<(tp-1));
        }
        vis[res] = 1;
    }
    for(int sta = 1;sta<(1<<n);++sta){
        for(int s = sta;s;s = (s-1)&sta){
            if(vis[s]){//有方案
                dp[sta] = max(dp[sta], dp[sta^s]+a[n-__builtin_popcount(sta)+1]);
            }
            else{
                dp[sta] = max(dp[sta], dp[sta^s]);
            }
        }
    }
    cout<< sum - dp[(1<<n)-1] <<endl;
    return 0;
}

C

待补

D

其实是个水题…然后我wa了半天

注意到当前的操作只影响左边,辣从右往左做,一定就是最新的结果辣

先统计操作的次数,然后做相应操作即可. 树状数组/线段树均可.

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
const int maxn = 1e5+10;

ll node[maxn+10];//存差分
int n,m;

ll add(ll x, ll y)
{
    x= x+y;
    if(x>=mod) return x-mod;
    if(x<0) return x + mod;
    return x;
}

struct node{
    int op,l,r;
    ll num;
}no[maxn+10];

inline int lowbit(int x)
{
    return (x&-x);
}

void add(int x, ll value, int up)
{
    for(int i=x;i<=up;i+=lowbit(i))
        node[i]=add(node[i], value);
}

ll get(int x)
{
    ll sum = 0;
    for(int i=x;i;i-=lowbit(i))
        sum= add(sum, node[i]);
    return sum;
}

int main()
{
    ios::sync_with_stdio(false);
    cin>>n>>m;
    for(int i=1;i<=m;++i){
        cin>>no[i].op>>no[i].l>>no[i].r;
        no[i].num = 1;
    }
    for(int i=m;i>=1;--i){
        no[i].num = add(no[i].num, get(i));//多余的次数
        if(no[i].op==2){//对区间[l,r]的操作次数进行加1*num     num 可能超过ll
            add(no[i].l, no[i].num, m);
            add(no[i].r+1, -no[i].num, m);
        }
    }
    memset(node, 0 ,sizeof(node));
    for(int i=1;i<=m;++i){
        if(no[i].op==1){
            add(no[i].l, no[i].num, n);
            add(no[i].r+1, -no[i].num, n);
        }
    }
    for(int i=1;i<n;++i){
        cout<<get(i)<<" ";
    }
    cout<<get(n);
    return 0;
}

E

待补


F

待补

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值