给你一个整数数组 nums
,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j
、i != k
且 j != k
,同时还满足 nums[i] + nums[j] + nums[k] == 0
。请
你返回所有和为 0
且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4] 输出:[[-1,-1,2],[-1,0,1]] 解释: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。 nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。 nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。 不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。 注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1] 输出:[] 解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0] 输出:[[0,0,0]] 解释:唯一可能的三元组和为 0 。
题解
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
n = len(nums) #取元祖的长度
res = [] #存放结果的元祖
if (not nums or n < 3):
return [] #不存在或者长度小于3返回空
nums.sort() #升序排序
for i in range(n):
if(nums[i]>0):
return res #最小值为正数则不存在符合要求的元祖
if(i>0 and nums[i] == nums[i-1]):
continue #跳过重复的值
#定义双指针
l = i + 1
r = n - 1
while(l<r):
if(nums[i]+nums[l]+nums[r]==0):
res.append([nums[i],nums[l],nums[r]])
# 跳过重复的值
while(l<r and nums[l]==nums[l+1]):
l=l+1
while(l<r and nums[r]==nums[r-1]):
r=r-1
#查找到一个答案 l、r移动
l=l+1
r=r-1
#大于0 r指针左移 总和减小
elif(nums[i]+nums[l]+nums[r]>0):
r=r-1
#小于0 l指针右移 总和增大
else:
l=l+1
return res