题目
题目
给你两个数组 nums1 和 nums2 。
请你返回 nums1 和 nums2 中两个长度相同的 非空 子序列的最大点积。
数组的非空子序列是通过删除原数组中某些元素(可能一个也不删除)后剩余数字组成的序列,但不能改变数字间相对顺序。比方说,[2,3,5] 是 [1,2,3,4,5] 的一个子序列而 [1,5,3] 不是。
示例 1:
输入:nums1 = [2,1,-2,5], nums2 = [3,0,-6]
输出:18
解释:从 nums1 中得到子序列 [2,-2] ,从 nums2 中得到子序列 [3,-6] 。
它们的点积为 (23 + (-2)(-6)) = 18 。
示例 2:
输入:nums1 = [3,-2], nums2 = [2,-6,7]
输出:21
解释:从 nums1 中得到子序列 [3] ,从 nums2 中得到子序列 [7] 。
它们的点积为 (3*7) = 21 。
示例 3:
输入:nums1 = [-1,-1], nums2 = [1,1]
输出:-1
解释:从 nums1 中得到子序列 [-1] ,从 nums2 中得到子序列 [1] 。
它们的点积为 -1 。
提示:
1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 100
题解
记忆化搜索
class Solution {
private int[] nums1, nums2;
private int[][] cache;
private int mk = Integer.MIN_VALUE;
public int maxDotProduct(int[] nums1, int[] nums2) {
this.nums1 = nums1;
this.nums2 = nums2;
int n1 = nums1.length, n2 = nums2.length;
cache = new int[n1][n2];
for (int i = 0; i < n1; i++) {
Arrays.fill(cache[i],-1);
}
//答案可能存在负数
return dfs(n1 - 1, n2 - 1) > 0 ? dfs(n1 - 1, n2 - 1) : mk;
}
public int dfs(int i, int j) {
if (i < 0 || j < 0) {
return 0;
}
if (cache[i][j] != -1) {
return cache[i][j];
}
int k = nums1[i] * nums2[j];
mk = Math.max(mk, k);
return cache[i][j] = Math.max(Math.max(dfs(i - 1, j), dfs(i, j - 1)), dfs(i - 1, j - 1) + k);
}
}
递推
class Solution {
public int maxDotProduct(int[] nums1, int[] nums2) {
int n1 = nums1.length, n2 = nums2.length;
int mk = Integer.MIN_VALUE;
int[][] f = new int[n1 + 1][n2 + 1];
for (int i = 0; i < n1; i++) {
for (int j = 0; j < n2; j++) {
int k = nums1[i] * nums2[j];
mk = Math.max(k, mk);
f[i + 1][j + 1] = Math.max(Math.max(f[i][j + 1], f[i + 1][j]), f[i][j] + k);
}
}
return f[n1][n2] > 0 ? f[n1][n2] : mk;
}
}
空间优化
class Solution {
public int maxDotProduct(int[] nums1, int[] nums2) {
int n2 = nums2.length;
int mk = Integer.MIN_VALUE;
int[] f = new int[n2 + 1];
for (int x : nums1) {
int pre = f[0];
for (int j = 0; j < n2; j++) {
int temp = f[j + 1];
int k = x * nums2[j];
mk = Math.max(k, mk);
f[j + 1] = Math.max(Math.max(f[j + 1], f[j]), pre + k);
pre = temp;
}
}
return f[n2] > 0 ? f[n2] : mk;
}
}