每日一题 1458两个子序列的最大点积

题目

题目
给你两个数组 nums1 和 nums2 。

请你返回 nums1 和 nums2 中两个长度相同的 非空 子序列的最大点积。

数组的非空子序列是通过删除原数组中某些元素(可能一个也不删除)后剩余数字组成的序列,但不能改变数字间相对顺序。比方说,[2,3,5] 是 [1,2,3,4,5] 的一个子序列而 [1,5,3] 不是。

示例 1:

输入:nums1 = [2,1,-2,5], nums2 = [3,0,-6]
输出:18
解释:从 nums1 中得到子序列 [2,-2] ,从 nums2 中得到子序列 [3,-6] 。
它们的点积为 (23 + (-2)(-6)) = 18 。
示例 2:

输入:nums1 = [3,-2], nums2 = [2,-6,7]
输出:21
解释:从 nums1 中得到子序列 [3] ,从 nums2 中得到子序列 [7] 。
它们的点积为 (3*7) = 21 。
示例 3:

输入:nums1 = [-1,-1], nums2 = [1,1]
输出:-1
解释:从 nums1 中得到子序列 [-1] ,从 nums2 中得到子序列 [1] 。
它们的点积为 -1 。

提示:

1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 100

题解

记忆化搜索

class Solution {
    private int[] nums1, nums2;
    private int[][] cache;
    private int mk = Integer.MIN_VALUE;

    public int maxDotProduct(int[] nums1, int[] nums2) {
        this.nums1 = nums1;
        this.nums2 = nums2;
        int n1 = nums1.length, n2 = nums2.length;
        cache = new int[n1][n2];
        for (int i = 0; i < n1; i++) {
            Arrays.fill(cache[i],-1);
        }
        //答案可能存在负数
        return dfs(n1 - 1, n2 - 1) > 0 ? dfs(n1 - 1, n2 - 1) : mk;
    }

    public int dfs(int i, int j) {
        if (i < 0 || j < 0) {
            return 0;
        }
        if (cache[i][j] != -1) {
            return cache[i][j];
        }
        int k = nums1[i] * nums2[j];
        mk = Math.max(mk, k);
        return cache[i][j] = Math.max(Math.max(dfs(i - 1, j), dfs(i, j - 1)), dfs(i - 1, j - 1) + k);
    }
}

递推

class Solution {
    public int maxDotProduct(int[] nums1, int[] nums2) {
        int n1 = nums1.length, n2 = nums2.length;
        int mk = Integer.MIN_VALUE;
        int[][] f = new int[n1 + 1][n2 + 1];
        for (int i = 0; i < n1; i++) {
            for (int j = 0; j < n2; j++) {
                int k = nums1[i] * nums2[j];
                mk = Math.max(k, mk);
                f[i + 1][j + 1] = Math.max(Math.max(f[i][j + 1], f[i + 1][j]), f[i][j] + k);
            }
        }
        return f[n1][n2] > 0 ? f[n1][n2] : mk;
    }
}

空间优化

class Solution {
    public int maxDotProduct(int[] nums1, int[] nums2) {
        int n2 = nums2.length;
        int mk = Integer.MIN_VALUE;
        int[] f = new int[n2 + 1];
        for (int x : nums1) {
            int pre = f[0];
            for (int j = 0; j < n2; j++) {
                int temp = f[j + 1];
                int k = x * nums2[j];
                mk = Math.max(k, mk);
                f[j + 1] = Math.max(Math.max(f[j + 1], f[j]), pre + k);
                pre = temp;
            }
        }
        return f[n2] > 0 ? f[n2] : mk;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值