题目:
Description
检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
列号
1 2 3 4 5 6
-------------------------
1 | | O | | | | |
-------------------------
2 | | | | O | | |
-------------------------
3 | | | | | | O |
-------------------------
4 | O | | | | | |
-------------------------
5 | | | O | | | |
-------------------------
6 | | | | | O | |
-------------------------
上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是跳棋放置的一个解。请编一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。
Input
输入包含多组测试数据,每组数据包含一个数字N (6 <= N <= 13) 表示棋盘是N x N大小的。
Output
对于每组测试数据,输出四行。
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
Sample Input
6
Sample Output
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
题意:
在整个棋盘中放的皇后要不同行,不同列,不同对角线。
思路:
如果把皇后放在了某一个位置,那么就要把他相应的行,列,主副对角线,都另为1,表示不能放其他皇后,皇后要一行一行的放,这样可以不用管行.
代码:
#include<stdio.h>
#include<string.h>
int count=0,n,c[30],m[5][30];
void king(int pos)
{
int i,j;
if (pos==n+1){
count++;
if (count>=1&&count<=3){
for(i=1;i<n;i++)
printf("%d ",c[i]);
if (i==n)
printf("%d\n",c[i]);
}
}
else for (i=1;i<=n;i++){
if (!m[1][i]&&!m[2][pos+i]&&!m[3][pos-i+n]){
c[pos]=i;//在第pos行下把皇后放在第i列。
m[1][i]=m[2][pos+i]=m[3][pos-i+n]=1;//m[1][i]表示当前列赋为1,m[2][pos+i]表示副对角线,m[3][pos-i+n]表示主对角线。
king(pos+1);
m[1][i]=m[2][pos+i]=m[3][pos-i+n]=0;//若能进行到这一步则说明他的下一行已不能放皇后了,所以当前行的皇后位置就得变化,所以列,主副对角线也都重新再赋为0.
}
}
}
int main()
{
while (scanf("%d",&n)!=EOF){
memset(m,0,sizeof (m));
count=0;
king(1);
printf("%d\n",count);
}
return 0;
}
主要要理解好递归,比如m[1][i]=m[2][pos+i]=m[3][pos-i+n]=0;就比较关键。
ps:
这题再hdu上还是超时了,等我学到了更优的方法再来完善吧。。。