给你一个N个点、M条边,不包含自环和重边的无向连通图.
(连通图即任意两点之间都可以直接或间接通过边到达)
如果删掉某条边之后,这张图变为不连通的了.
(即某个点不能到达另外一个点了).
则这条边称为“好边”.
输出”好边”的个数.
Input
第一行两个整数N,M(N<=50,M<=min(N*(N-1))/2,50).
接下来M行.
每行两个整数ai,bi.
表示第i条边连接着两个节点ai,bi.
Output
一行,一个整数,表示”好边”的个数。
Sample Input 1
7 7
1 3
2 7
3 4
4 5
4 6
5 6
6 7
Sample Output 1
4
和拓扑排序思路一致,每次都找到入度为1的点,将其所在的边记为“好边“并去除,并且将这条“好边“的另一个节点自减,再次找到入度为1的点进行这样的操作,直到找不到为止,这样最后只会留下成环的边数,因为他们的节点不会成为入度为1的节点,具体看代码:
#include <bits/stdc++.h>
#define ll long long
#define pb push_back
using namespace std;
int N,M;
int Map[55][55];
int visit[55];
int main(){
cin>>N>>M;
for(int i = 1;i<=M;i++)
{
int a,b;
cin>>a>>b;
visit[a]++;
visit[b]++;
Map[a][b] = Map[b][a] = 1;
}
int sum = 0;
int xi;
bool falg = true;
while(1)
{
falg = true;
for(int i = 1;i<=N;i++)
{
if(visit[i]==1)
{
sum++;
xi = i;
falg = false;
visit[i]--;
break;
}
}
if(falg) break;
for(int i = 1;i<=N;i++)
{
if(Map[xi][i]==1)
visit[i]--;
}
}
cout<<sum<<endl;
return 0;
}