C. Producing Snow
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
Alice likes snow a lot! Unfortunately, this year’s winter is already over, and she can’t expect to have any more of it. Bob has thus bought her a gift — a large snow maker. He plans to make some amount of snow every day. On day i he will make a pile of snow of volume Vi and put it in her garden.
Each day, every pile will shrink a little due to melting. More precisely, when the temperature on a given day is Ti, each pile will reduce its volume by Ti. If this would reduce the volume of a pile to or below zero, it disappears forever. All snow piles are independent of each other.
Note that the pile made on day i already loses part of its volume on the same day. In an extreme case, this may mean that there are no piles left at the end of a particular day.
You are given the initial pile sizes and the temperature on each day. Determine the total volume of snow melted on each day.
Input
The first line contains a single integer N (1 ≤ N ≤ 105) — the number of days.
The second line contains N integers V1, V2, …, VN (0 ≤ Vi ≤ 109), where Vi is the initial size of a snow pile made on the day i.
The third line contains N integers T1, T2, …, TN (0 ≤ Ti ≤ 109), where Ti is the temperature on the day i.
Output
Output a single line with N integers, where the i-th integer represents the total volume of snow melted on day i.
Examples
Input
Copy
3
10 10 5
5 7 2
Output
5 12 4
Input
Copy
5
30 25 20 15 10
9 10 12 4 13
Output
9 20 35 11 25
Note
In the first sample, Bob first makes a snow pile of volume 10, which melts to the size of 5 on the same day. On the second day, he makes another pile of size 10. Since it is a bit warmer than the day before, the first pile disappears completely while the second pile shrinks to 3. At the end of the second day, he has only a single pile of size 3. On the third day he makes a smaller pile than usual, but as the temperature dropped too, both piles survive till the end of the day.
题解:对于每一个雪堆,没有融化完时融化的都是t[i],我们只要确定这一天融化完的雪堆有几个就好了,他们剩余的量就是a[i]-sum[i-1](sum[i-1]是之前的融化量,然后让其余数量*t[i]就是当天的总融化量
#include <bits/stdc++.h>
#define ll long long
#define pb push_back
#define inf 0x3f3f3f3f
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rep1(i,a,b) for(int i=a;i>=b;i--)
#define rson rt<<1|1,m+1,r
#define lson rt<<1,l,m
using namespace std;
const int N=1e6+100;
priority_queue<ll ,vector<ll>,greater<ll> >q;
ll a[N],b[N],sum[N],t[N];
int main()
{
ll n;cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
for(int i=1;i<=n;i++)
{
cin>>t[i];sum[i]=t[i]+sum[i-1];
}
for(int i=1;i<=n;i++)
{
long long ans=0;q.push(a[i]+sum[i-1]);
while(!q.empty()&&q.top()<=sum[i])
{
ans+=q.top()-sum[i-1];
q.pop();
}
ans+=q.size()*t[i];
cout<<ans<<' ';
}
cout<<endl;
return 0;
}