求排列的逆序数
- 内存限制:
65536kB
描述
在Internet上的搜索引擎经常需要对信息进行比较,比如可以通过某个人对一些事物的排名来估计他(或她)对各种不同信息的兴趣,从而实现个性化的服务。
对于不同的排名结果可以用逆序来评价它们之间的差异。考虑1,2,…,n的排列i1,i2,…,in,如果其中存在j,k,满足 j < k 且 ij > ik, 那么就称(ij,ik)是这个排列的一个逆序。
一个排列含有逆序的个数称为这个排列的逆序数。例如排列 263451 含有8个逆序(2,1),(6,3),(6,4),(6,5),(6,1),(3,1),(4,1),(5,1),因此该排列的逆序数就是8。显然,由1,2,…,n 构成的所有n!个排列中,最小的逆序数是0,对应的排列就是1,2,…,n;最大的逆序数是n(n-1)/2,对应的排列就是n,(n-1),…,2,1。逆序数越大的排列与原始排列的差异度就越大。
现给定1,2,…,n的一个排列,求它的逆序数。
输入
第一行是一个整数n,表示该排列有n个数(n <= 100000)。
第二行是n个不同的正整数,之间以空格隔开,表示该排列。
输出
输出该排列的逆序数。
样例输入
6 2 6 3 4 5 1
样例输出
8
提示
1. 利用二分归并排序算法(分治);
2. 注意结果可能超过int的范围,需要用long long存储。
分治算法中,要移动的从小到大的数,跳过的位数就是逆对
#include<bits/stdc++.h>
using namespace std;
#define MAX 100009
int n;
long long sum=0;// 计算器
int a[MAX],b[MAX];
void merge(int a[],int s,int m,int e){
int pb=0,p1=s,p2=m+1;//下标,b数组的和分成两段的数组的
while(p1<=m&&p2<=e)//当两个数组者没完时
{
if(a[p2]<a[p1])//后面的值小于前面的值
{sum+=m-p1+1;//找到逆序对
b[pb++]=a[p2++];//小的p2指向的值排在b的前面
}
else
b[pb++]=a[p1++];//无逆对,b放p1指向的值
}
while(p1<=m)//如果还有没排完的值
b[pb++]=a[p1++];
while(p2<=e)//如果还有没排完的值
b[pb++]=a[p2++];
for(int i=0;i<=e-s;i++)
a[s+i]=b[i];}
void mergesort(int a[],int s,int e){
if(s<e)
{
int m=s+(e-s)/2;
mergesort(a,s,m);
mergesort(a,m+1,e);
merge(a,s,m,e);
}
}
int main(){
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
mergesort(a,0,n-1);
printf("%ld",sum);
}