- 博客(3)
- 资源 (1)
- 收藏
- 关注
原创 pl.Trainer中gpus参数说明
如果我们想要监测GPU内存的使用状况,Lightning也提供了相应的flag。有时候,我们不知道那些GPU是被占用的,也就没办法指定GPU,Lightning为此提供了flag,它可以替我们检测可以使用的GPU个数以及序号。如果你模型的输入大小保持不变,那么可以设置cudnn.benchmark为True,这样可以加速训练,如果输入大小不固定,那么反而会减慢训练。如果指定了多个 GPU,PyTorch Lightning 会自动选择合适的分布式训练策略(如 DataParallel 或 DDP)。
2024-12-10 09:57:26
1134
原创 AnomalySD:Few-Shot Multi-Class Anomaly Detection with Stable Diffusion Mode_总结
此外,主 流方法需要为不同的对象训练定制模型,这会产生高昂的成本,并且在实践中缺乏灵活性。首先设置一些掩模可以很大程度上覆盖图像中的异常区域,然后使用SD将掩蔽的异常区域绘制成未掩蔽的正常像素的正常区域。通过比较原始图像和已绘制的图像,理想情况可以定位异常区域。为了 使 SD 适应异常检测任务,我们设计了不同的分层文本描述和前景掩码机制来微调 SD。的帮助,因为它具有零/少样本修复能力,可以利用它来像正常情况一样修复异常区域。设计了不同的分层文本描述和前景掩模机制,用于微调SD(优化模型的修复能力)。
2024-11-30 00:05:24
716
原创 YOLO v5 前后处理GPU加速部署
深度学习模型部署中复杂的前后处理往往部署cpu中,这一方面极大地增加模型处理耗时,另一方面挤兑了cpu计算资源,导致整个软件平台卡死,本博客针对C#编写界面软件调用C++模型接口情形,分别从C#与C++间图片传输优化、前处理GPU加速、后处理GPU加速三个角度进行优化。测试服务器:window10、Intel(R) Xeon(R) Gold 5115 CPU @ 2.40GHz、RTX2080 Ti。
2024-01-04 23:05:31
2136
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人