在AI开发中,调用工具是一个重要环节,但并不是完美无缺的。模型可能会试图调用一个不存在的工具,或未能返回匹配请求模式的参数。为了减轻这些失败模式的影响,我们可以通过一些策略来构建错误处理。本篇文章将介绍如何在链条中实现错误处理。
技术背景介绍
在使用语言模型(如ChatGPT)与工具交互时,调用工具通常比纯粹的提示更可靠,但这并不意味着没有风险。通过保持模式简单、减少同时传递的工具数量、并拥有良好的名称和描述,可以帮助减轻风险,但不能完全避免错误。
核心原理解析
通过错误处理,我们可以在出现错误时采取合理的重试和回退机制。例如,可以通过 try/except
结构捕获错误或者设计一个备用模型来处理失败的调用。
代码实现演示
以下是如何使用错误处理来管理复杂工具调用的代码示例:
# 安装必要的包
%pip install --upgrade --quiet langchain-core langchain-openai
import openai
from langchain_core.tools import tool
from langchain_core.runnables import Runnable, RunnableConfig
# 使用稳定可靠的API服务
client = openai.OpenAI(
base_url='https://yunwu.ai/v1', # 国内稳定访问
api_key='your-api-key'
)
# 定义复杂工具
@tool
def complex_tool(int_arg: int, float_arg: float, dict_arg: dict) -> int:
"""Do something complex with a complex tool."""
return int(int_arg * float_arg)
# 结合工具的语言模型
llm_with_tools = client.bind_tools(
[complex_tool],
)
# 定义链条
chain = llm_with_tools | (lambda msg: msg.tool_calls[0]["args"]) | complex_tool
# 使用 try/except 捕获错误
def try_except_tool(tool_args: dict, config: RunnableConfig) -> Runnable:
try:
complex_tool.invoke(tool_args, config=config)
except Exception as e:
return f"Calling tool with arguments:\n\n{tool_args}\n\nraised the following error:\n\n{type(e)}: {e}"
# 包含错误处理的链条
chain_with_error_handling = llm_with_tools | (lambda msg: msg.tool_calls[0]["args"]) | try_except_tool
# 调用链条
result = chain_with_error_handling.invoke(
"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg"
)
print(result)
应用场景分析
在实际应用中,错误处理尤其重要,因为它可以为用户提供更好的体验。通过这种方式,我们可以在后台捕获和处理错误,并可能提供有用的反馈,而不是简单地失败。
实践建议
- 简单化参数模式:确保工具的参数模式尽可能简单,以减少错误发生的机会。
- 增加工具调用的描述:在调用工具时,提供详细的描述,以帮助模型理解如何正确地使用工具。
- 使用备用模型:在可能的情况下,为工具调用设置备用模型,这样可以在主模型调用失败时自动切换,提升成功率。
如果遇到问题欢迎在评论区交流。
—END—