# python(四)上：列表生成式、生成器、迭代器和内置函数

### 一、列表生成式

>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> L = []
>>> for x in range(1, 11):
...    L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

for循环其实可以同时使用两个甚至多个变量，比如dict的items()可以同时迭代key和value：

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
...     print(k, '=', v)
...
y = B
x = A
z = C

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']

>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']

>>> def func(num):
...     print(num)
...
>>> [func(i) for i in range(3)]
0
1
2
[None, None, None]

### 二、生成器

• 第一种方法，只要把一个列表生成式的[]改成()

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
……
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
• 第二种方法，函数实现

generator非常强大。如果推算的算法比较复杂，用类似列表生成式的for循环无法实现的时候，还可以用函数来实现。

1, 1, 2, 3, 5, 8, 13, 21, 34, …

def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'

a, b = b, a + b
# 错误以为，等同于一下：
# a = b
# b = a + b

t = (b, a + b)  # t是一个tuple
a = t[0]
b = t[1]

>>> fib(5)
1
1
2
3
5
done

fib函数实际上是定义了斐波拉契数列的推算规则，可以从第一个元素开始，推算出后续任意的元素，这种逻辑其实非常类似generator。

def fib(max):
n,a,b = 0,0,1

while n < max:
#print(b)
yield  b
a,b = b,a+b

n += 1

return 'done'

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

import time
def consumer(name):  # 消费者
print("%s 准备吃包子啦！" %name)
while True:
baozi = yield
print("包子【%s】来了，被【%s】吃了！" %(baozi, name))

def producer():   # 生产者
c = consumer('A')
c2 = consumer('B')

c.__next__()
next(c2)

print("开始做包子了！")
for i in ["韭菜馅","茴香馅","鸡蛋馅","猪肉馅"]:
time.sleep(1.5)
print("做了两个个包子")
c.send(i)       #------------------------
c2.send(i)      # .send(i):给yield发送值

producer()

1. 生成式：一边循环一边计算,调用的时候才生成，只有在调用时才回生成相应的数据。只记录当前位置，只有一个next方法。（next和 __next__）
2. 取值：使用for 循环
c.__next__()这个方法，超出值后抛出异常为返回值。）循环不会。
3. .send()：给yield发送值
4. 变成generator的函数，在每次调用next()的时候执行，遇到yield语句返回，再次执行时从上次返回的yield语句处继续执行。

### 三、迭代器

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

Iterator甚至可以表示一个无限大的数据流，例如全体自然数。而使用list是永远不可能存储全体自然数的。
python版本：
3.x：range() 是迭代器
2.x：range() 是列表，xrange()是迭代器

1. 凡是可作用于for循环的对象都是Iterable类型；
2. 凡是可作用于next()函数的对象都是Iterator类型，它们表示一个惰性计算的序列；
所以生成器一定是迭代器。
3. 集合数据类型如list、dict、str等是Iterable但不是Iterator，不过可以通过iter()函数获得一个Iterator对象。

### 四、内置函数

filter、map、reduce 方法

• filter(function_or_None,iterable) :一组数据里面过滤出符合条件的，返回迭代器
• map(func,*iterables) :对你传入的每个值进行处理，返回迭代器
• functools.reduce(function,sequence,initial=None)
# filter()  一组数据过滤出你想要的来
res = filter(lambda n:n>5,range(10))
for i in res :
print(i)
# map()  对传入的每个值进行处理返回一个列表
res = map(lambda n:n*2, range(10))
# res = [i*2 for i in range(10)]
# res = [ lambda i:i*2 for i in range(10)]
for i in res:
print(i)

reduce函数（python3中不属于内置函数）是一个二元操作函数，他用来将一个数据集合（链表，元组等）中的所有数据进行下列操作：用传给reduce中的函数 func()（必须是一个二元操作函数）先对集合中的第1，2个数据进行操作，得到的结果再与第三个数据用func()函数运算，最后得到一个结果。

from  functools import reduce

# 普通函数实现
return x+y
res = reduce(myadd, range(10))
print(res)

# 匿名函数实现
res = reduce(lambda x,y:x+y, range(10))
print(res)
# 这种方式用lambda表示当做参数，因为没有提供reduce的第三个参数，
# 所以第一次执行时x=1,y=2,第二次x=1+2,y=3,即列表的第三个元素  
>>> abs(-1)          # abs 绝对值
1
max 最大值    min 最小值    sum 求和
>>> divmod(7,3)      # divmod 商除
(2, 1)
>>> pow(2,8)         # pow 2的8次方
256
>>> round(1.3342, 2) # round 精确小数点
1.33
>>> a = frozenset(set([1,2,2,6,6]))
>>> a                # frozenset 把集合变成只读集合
frozenset({1, 2, 6})
>>> hash("fgf")      # hash 得到hash值
-3999898619896197237
>>> all([-5, 0, 3])  # all 全真则真
False
>>> any([-5, 0, 3])  # any 一真则真
True
>>>next()            # 取下一个值
>>> a = {}
>>> dir(a)           # dir 查看可用方法
['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__'
>>> id(a)            # id 返回内存地址
2243411483112
>>> bin(8)           # bin 十进制转二进制
'0b1000'
>>> hex(200)         # hex  把十进制转成16进制
'0xc8'
>>> oct(10)          # oct 把十进制转成8进制
'0o12'
>>> bool(0)          # bool 布尔值
False
>>> a = [1,3,4,6]
>>> b = reversed(a)  # reversed 反转为一个迭代器
>>> next(b)
6
>>> next(b)
4
>>> a = {6:2, 8:0, 1:4, -5:5, 99:11} # sorted 排序
>>> print(sorted(a.items()))
[(-5, 5), (1, 4), (6, 2), (8, 0), (99, 11)]

# bytearray 通过assic码更改变量
>>> b=bytearray("abcd",encoding='utf-8')
>>> print(b[0])
97
>>> b[0]=50
>>> print(b)
bytearray(b'2bcd')

>>> def a():
...     pass
>>> callable(a)     # callable 判断可不可以加括号
True

>>> chr(97)         # chr 返回数字assic的表对应的值
'a'
>>> ord('d')        # ord 返回值的assic对应数字
100
>>> exec("print('hello')")
hello               # exec 执行字符串
>>> dict = eval("{'a':1,'b':2}")
>>> dict            # eval 将字符串转为字典
{'b': 2, 'a': 1}

zip  拉链
a = [1,2,3,4]
b = ["a",'b',"c"]
for i in zip(a,b):
print(i)

__import__('deco')  # 导入字符串类型模块名

print(globals())    # 返回全局变量所有的key-values模式
globals().get(a)
locals()
classmethod()       # 类方法
getattr
delattr 面向对象之后讲