机器学习算法--python实现随机森林(分类)

python实现随机森林(分类)

可以把随机森林看成是决策树的集 合。随机森林背后的逻辑是对分别受较大方差影响的多个决策树取平均值, 以建立一个具有更好的泛化性能和不易过拟合的强大模型。

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
print('Class labels:', np.unique(y))

# Splitting data into 70% training and 30% test data:
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.3, random_state=1, stratify=y)
X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))

def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                           np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0],
                    y=X[y == cl, 1],
                    alpha=0.8,
                    c=colors[idx],
                    marker=markers[idx],
                    label=cl,
                    edgecolor='black')

    # highlight test samples
    if test_idx:
        # plot all samples
        X_test, y_test = X[test_idx, :], y[test_idx]

        plt.scatter(X_test[:, 0],
                    X_test[:, 1],
                    c='y',
                    edgecolor='black',
                    alpha=1.0,
                    linewidth=1,
                    marker='o',
                    s=100,
                    label='test set')

forest = RandomForestClassifier(criterion='gini',
                                n_estimators=25,
                                random_state=1,
                                n_jobs=2)
forest.fit(X_train, y_train)

plot_decision_regions(X_combined, y_combined,
                      classifier=forest, test_idx=range(105, 150))

plt.xlabel('petal length [cm]')
plt.ylabel('petal width [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
#plt.savefig('images/03_22.png', dpi=300)
plt.show()

运行结果:
Class labels: [0 1 2]

运行结果图:
在这里插入图片描述

  • 3
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Python是一种流行的编程语言,广泛用于机器学习算法实现。以下是使用Python实现机器学习算法的一般步骤: 1. 导入所需的库:在Python中,常用的机器学习库包括NumPy(用于数值计算)、Pandas(用于数据处理)、Scikit-learn(用于机器学习算法)、Matplotlib(用于数据可视化)等。首先,你需要导入这些库。 2. 数据预处理:对于机器学习算法来说,数据预处理是一个重要的步骤。它包括数据清洗、特征选择和特征缩放等过程,以准备好输入模型的数据。 3. 拆分数据集:将数据集划分为训练集和测试集。训练集用于构建模型,而测试集用于评估模型的性能。 4. 选择算法:根据你的问题类型(分类、回归等)和数据特征选择适当的机器学习算法。例如,你可以使用决策树随机森林、支持向量机(SVM)或神经网络等。 5. 训练模型:使用训练集对选择的算法进行训练。这涉及到将输入数据与其对应的标签进行匹配,并调整模型参数以最小化误差。 6. 模型评估:使用测试集对模型进行评估。常见的评估指标包括准确率、精确率、召回率、F1分数等。 7. 参数调优:根据模型的性能进行参数调优,以改进模型的预测能力。 8. 模型应用:一旦你的模型经过训练和调优,你可以将其应用于新的未知数据,进行预测或分类等任务。 请注意,这只是一个一般的流程示例,每个机器学习算法实现可能会有所不同。在实践中,你可能需要根据具体问题的特点进行适当的调整和改进

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值