python 计算相关性系数np.corrcoef()

文章讲述了计算连续型与连续型双变量相关性的方法,强调了相关性系数在量化变量间关系中的作用。通过使用numpy和pandas库展示了一个例子,计算了两个数组X和Y的相关性系数,结果显示为0.64897259,表明它们之间存在中等到强的相关性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算相关性是分析连续型与连续型双变量的常用方法,散点图只能直观的显示双变量(特征)之间的关系,但并不能说明关系的强弱,而相关性可以对变量之间的关系进行量化分析。
 
相关性系数的公式如下:
在这里插入图片描述
相关性系数的取值区间为[-1,1]。当相关性系数为-1时,表示强负线性相关;当相关性系数为1时,表示强正相关;当相关性系数为0时,表示不相关。
一般来说,在取绝对值后,0-0.09为没有相关性,0.1-0.3为弱相关,0.3-0.5为中相关,0.5-0.1为强相关。

# 修改pandas默认的现实设置
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', 10)
pd.set_option('display.max_rows', 20)

# 相关性系数
# 一般来说,在取绝对值后,0~0.09为没有相关性,0.1~0.3为弱相关,
# 0.3~0.5为中等相关,0.5~1.0为强相关.
X = np.array([65, 72, 78, 65, 72, 70, 65, 68])
Y = np.array([72, 69, 79, 69, 84, 75, 60, 73])
print(np.corrcoef(X, Y))

运行结果:

[[1.         0.64897259]
 [0.64897259 1.        ]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值