SelectKBest()函数筛选特征-过滤法-特征选择-特征降维

SelectKBest()函数:选择K个最好的特征,返回选择特征后的数据
 
运用了三种方法来选择:
(1)相关系数法。
使用相关系数法,先计算各个特征对目标值的相关系数及相关系数的P值,然后根据阈值筛选特征。
(2)卡方检验。
经典的卡方检验是检验定性自变量与定性因变量的相关性。
(3)最大信息系数法(Maximal information coefficient, MIC)。
MIC是基于互信息理论的,经典的互信息也是评价定性自变量与定性因变量相关性的方法。

import numpy as np
from sklearn.datasets import load_iris
from array import array
from sklearn.feature_selection import SelectKBest
from scipy.stats import pearsonr
from sklearn.feature_selection import chi2
from minepy import MINE

iris = load_iris()
print("iris.data:\n", iris.data)
print("iris.target:\n", iris.target)

# (1)相关系数法。
# 使用相关系数法,先要计算各个特征对目标值的相关系数及相关系数的P值,然后根据阈值筛选特征。

# 选择K个最好的特征,返回选择特征后的数据
# 第一个参数为计算评估特征是否好的函数,该函数输入特征矩阵和目标向量,输出二元组(评分,P值)的数组,
# 数组第i项为第i个特征的评分和P值。在此定义为计算相关系数
# 参数k为选择的特征个数

# corr, p = pearsonr(x,y):
# 皮尔逊相关系数(Pearson Correlation Coefficient)用于衡量两个变量之间的线性相关相关关系,
# 相关系数的取值在-1与1之间,大于0为正相关,小于0为负相关。
# 如 PearsonRResult(statistic=-0.8233869695926184, pvalue=0.17661303040738163)

data_cor = SelectKBest(
    lambda X, Y: np.array(list(map(lambda x: pearsonr(x, Y), X.T))).T[0],
    k=2).fit_transform(iris.data, iris.target)

print("data_cor:\n", data_cor)


###################################################################################
# (2)卡方检验。
# 经典的卡方检验是检验定性自变量与定性因变量的相关性。
# 卡方检验核心思想:实际观测值与期望值之间的偏离程度
# 实际观测值与期望值之间的偏离程度决定卡方值的大小,卡方值越小,偏差越小,实际值越趋于符合期望值

# 选择K个最好的特征,返回选择特征后的数据
data_chi2 = SelectKBest(chi2, k=2).fit_transform(iris.data, iris.target)
print("data_chi2:\n", data_chi2)


####################################################################################
# (3)最大信息系数法(Maximal information coefficient, MIC)。
# MIC是基于互信息理论的,经典的互信息也是评价定性自变量与定性因变量相关性的方法。

# 两个随机变量的互信息是变量间相互依赖性的量度,度量两个随机变量共享的信息
# 也可以说互信息是指知道随机变量x,对随机变量y的不确定性(熵,表示一个随机变量的信息量)的减少


# 由于MINE的设计不是函数式的,定义mic方法将其为函数式的,返回一个二元组,二元组的第2项设置成固定的P值0.5
def mic(x, y):
    m = MINE()
    m.compute_score(x, y)
    # m.mic():
    # Returns the Maximal Information Coefficient (MIC or MIC_e).
    return (m.mic(), 0.5)


# 选择K个最好的特征,返回特征选择后的数据
data_mic = SelectKBest(
    lambda X, Y: np.array(list(map(lambda x: mic(x, Y), X.T))).T[0],
    k=2).fit_transform(iris.data, iris.target)

print("data_mic:\n", data_mic)

 
运行结果:

iris.data:
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3. 1.4 0.1]
[4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5. 3. 1.6 0.2]
[5. 3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.2]
[5. 3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.6 1.4 0.1]
[4.4 3. 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5. 3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3. 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5. 3.3 1.4 0.2]
[7. 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4. 1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
[6.3 3.3 4.7 1.6]
[4.9 2.4 3.3 1. ]
[6.6 2.9 4.6 1.3]
[5.2 2.7 3.9 1.4]
[5. 2. 3.5 1. ]
[5.9 3. 4.2 1.5]
[6. 2.2 4. 1. ]
[6.1 2.9 4.7 1.4]
[5.6 2.9 3.6 1.3]
[6.7 3.1 4.4 1.4]
[5.6 3. 4.5 1.5]
[5.8 2.7 4.1 1. ]
[6.2 2.2 4.5 1.5]
[5.6 2.5 3.9 1.1]
[5.9 3.2 4.8 1.8]
[6.1 2.8 4. 1.3]
[6.3 2.5 4.9 1.5]
[6.1 2.8 4.7 1.2]
[6.4 2.9 4.3 1.3]
[6.6 3. 4.4 1.4]
[6.8 2.8 4.8 1.4]
[6.7 3. 5. 1.7]
[6. 2.9 4.5 1.5]
[5.7 2.6 3.5 1. ]
[5.5 2.4 3.8 1.1]
[5.5 2.4 3.7 1. ]
[5.8 2.7 3.9 1.2]
[6. 2.7 5.1 1.6]
[5.4 3. 4.5 1.5]
[6. 3.4 4.5 1.6]
[6.7 3.1 4.7 1.5]
[6.3 2.3 4.4 1.3]
[5.6 3. 4.1 1.3]
[5.5 2.5 4. 1.3]
[5.5 2.6 4.4 1.2]
[6.1 3. 4.6 1.4]
[5.8 2.6 4. 1.2]
[5. 2.3 3.3 1. ]
[5.6 2.7 4.2 1.3]
[5.7 3. 4.2 1.2]
[5.7 2.9 4.2 1.3]
[6.2 2.9 4.3 1.3]
[5.1 2.5 3. 1.1]
[5.7 2.8 4.1 1.3]
[6.3 3.3 6. 2.5]
[5.8 2.7 5.1 1.9]
[7.1 3. 5.9 2.1]
[6.3 2.9 5.6 1.8]
[6.5 3. 5.8 2.2]
[7.6 3. 6.6 2.1]
[4.9 2.5 4.5 1.7]
[7.3 2.9 6.3 1.8]
[6.7 2.5 5.8 1.8]
[7.2 3.6 6.1 2.5]
[6.5 3.2 5.1 2. ]
[6.4 2.7 5.3 1.9]
[6.8 3. 5.5 2.1]
[5.7 2.5 5. 2. ]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[6.5 3. 5.5 1.8]
[7.7 3.8 6.7 2.2]
[7.7 2.6 6.9 2.3]
[6. 2.2 5. 1.5]
[6.9 3.2 5.7 2.3]
[5.6 2.8 4.9 2. ]
[7.7 2.8 6.7 2. ]
[6.3 2.7 4.9 1.8]
[6.7 3.3 5.7 2.1]
[7.2 3.2 6. 1.8]
[6.2 2.8 4.8 1.8]
[6.1 3. 4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3. 5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2. ]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3. 6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6. 3. 4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 3.3 5.7 2.5]
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
iris.target:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]
data_cor:
[[1.4 0.2]
[1.4 0.2]
[1.3 0.2]
[1.5 0.2]
[1.4 0.2]
[1.7 0.4]
[1.4 0.3]
[1.5 0.2]
[1.4 0.2]
[1.5 0.1]
[1.5 0.2]
[1.6 0.2]
[1.4 0.1]
[1.1 0.1]
[1.2 0.2]
[1.5 0.4]
[1.3 0.4]
[1.4 0.3]
[1.7 0.3]
[1.5 0.3]
[1.7 0.2]
[1.5 0.4]
[1. 0.2]
[1.7 0.5]
[1.9 0.2]
[1.6 0.2]
[1.6 0.4]
[1.5 0.2]
[1.4 0.2]
[1.6 0.2]
[1.6 0.2]
[1.5 0.4]
[1.5 0.1]
[1.4 0.2]
[1.5 0.2]
[1.2 0.2]
[1.3 0.2]
[1.4 0.1]
[1.3 0.2]
[1.5 0.2]
[1.3 0.3]
[1.3 0.3]
[1.3 0.2]
[1.6 0.6]
[1.9 0.4]
[1.4 0.3]
[1.6 0.2]
[1.4 0.2]
[1.5 0.2]
[1.4 0.2]
[4.7 1.4]
[4.5 1.5]
[4.9 1.5]
[4. 1.3]
[4.6 1.5]
[4.5 1.3]
[4.7 1.6]
[3.3 1. ]
[4.6 1.3]
[3.9 1.4]
[3.5 1. ]
[4.2 1.5]
[4. 1. ]
[4.7 1.4]
[3.6 1.3]
[4.4 1.4]
[4.5 1.5]
[4.1 1. ]
[4.5 1.5]
[3.9 1.1]
[4.8 1.8]
[4. 1.3]
[4.9 1.5]
[4.7 1.2]
[4.3 1.3]
[4.4 1.4]
[4.8 1.4]
[5. 1.7]
[4.5 1.5]
[3.5 1. ]
[3.8 1.1]
[3.7 1. ]
[3.9 1.2]
[5.1 1.6]
[4.5 1.5]
[4.5 1.6]
[4.7 1.5]
[4.4 1.3]
[4.1 1.3]
[4. 1.3]
[4.4 1.2]
[4.6 1.4]
[4. 1.2]
[3.3 1. ]
[4.2 1.3]
[4.2 1.2]
[4.2 1.3]
[4.3 1.3]
[3. 1.1]
[4.1 1.3]
[6. 2.5]
[5.1 1.9]
[5.9 2.1]
[5.6 1.8]
[5.8 2.2]
[6.6 2.1]
[4.5 1.7]
[6.3 1.8]
[5.8 1.8]
[6.1 2.5]
[5.1 2. ]
[5.3 1.9]
[5.5 2.1]
[5. 2. ]
[5.1 2.4]
[5.3 2.3]
[5.5 1.8]
[6.7 2.2]
[6.9 2.3]
[5. 1.5]
[5.7 2.3]
[4.9 2. ]
[6.7 2. ]
[4.9 1.8]
[5.7 2.1]
[6. 1.8]
[4.8 1.8]
[4.9 1.8]
[5.6 2.1]
[5.8 1.6]
[6.1 1.9]
[6.4 2. ]
[5.6 2.2]
[5.1 1.5]
[5.6 1.4]
[6.1 2.3]
[5.6 2.4]
[5.5 1.8]
[4.8 1.8]
[5.4 2.1]
[5.6 2.4]
[5.1 2.3]
[5.1 1.9]
[5.9 2.3]
[5.7 2.5]
[5.2 2.3]
[5. 1.9]
[5.2 2. ]
[5.4 2.3]
[5.1 1.8]]
data_chi2:
[[1.4 0.2]
[1.4 0.2]
[1.3 0.2]
[1.5 0.2]
[1.4 0.2]
[1.7 0.4]
[1.4 0.3]
[1.5 0.2]
[1.4 0.2]
[1.5 0.1]
[1.5 0.2]
[1.6 0.2]
[1.4 0.1]
[1.1 0.1]
[1.2 0.2]
[1.5 0.4]
[1.3 0.4]
[1.4 0.3]
[1.7 0.3]
[1.5 0.3]
[1.7 0.2]
[1.5 0.4]
[1. 0.2]
[1.7 0.5]
[1.9 0.2]
[1.6 0.2]
[1.6 0.4]
[1.5 0.2]
[1.4 0.2]
[1.6 0.2]
[1.6 0.2]
[1.5 0.4]
[1.5 0.1]
[1.4 0.2]
[1.5 0.2]
[1.2 0.2]
[1.3 0.2]
[1.4 0.1]
[1.3 0.2]
[1.5 0.2]
[1.3 0.3]
[1.3 0.3]
[1.3 0.2]
[1.6 0.6]
[1.9 0.4]
[1.4 0.3]
[1.6 0.2]
[1.4 0.2]
[1.5 0.2]
[1.4 0.2]
[4.7 1.4]
[4.5 1.5]
[4.9 1.5]
[4. 1.3]
[4.6 1.5]
[4.5 1.3]
[4.7 1.6]
[3.3 1. ]
[4.6 1.3]
[3.9 1.4]
[3.5 1. ]
[4.2 1.5]
[4. 1. ]
[4.7 1.4]
[3.6 1.3]
[4.4 1.4]
[4.5 1.5]
[4.1 1. ]
[4.5 1.5]
[3.9 1.1]
[4.8 1.8]
[4. 1.3]
[4.9 1.5]
[4.7 1.2]
[4.3 1.3]
[4.4 1.4]
[4.8 1.4]
[5. 1.7]
[4.5 1.5]
[3.5 1. ]
[3.8 1.1]
[3.7 1. ]
[3.9 1.2]
[5.1 1.6]
[4.5 1.5]
[4.5 1.6]
[4.7 1.5]
[4.4 1.3]
[4.1 1.3]
[4. 1.3]
[4.4 1.2]
[4.6 1.4]
[4. 1.2]
[3.3 1. ]
[4.2 1.3]
[4.2 1.2]
[4.2 1.3]
[4.3 1.3]
[3. 1.1]
[4.1 1.3]
[6. 2.5]
[5.1 1.9]
[5.9 2.1]
[5.6 1.8]
[5.8 2.2]
[6.6 2.1]
[4.5 1.7]
[6.3 1.8]
[5.8 1.8]
[6.1 2.5]
[5.1 2. ]
[5.3 1.9]
[5.5 2.1]
[5. 2. ]
[5.1 2.4]
[5.3 2.3]
[5.5 1.8]
[6.7 2.2]
[6.9 2.3]
[5. 1.5]
[5.7 2.3]
[4.9 2. ]
[6.7 2. ]
[4.9 1.8]
[5.7 2.1]
[6. 1.8]
[4.8 1.8]
[4.9 1.8]
[5.6 2.1]
[5.8 1.6]
[6.1 1.9]
[6.4 2. ]
[5.6 2.2]
[5.1 1.5]
[5.6 1.4]
[6.1 2.3]
[5.6 2.4]
[5.5 1.8]
[4.8 1.8]
[5.4 2.1]
[5.6 2.4]
[5.1 2.3]
[5.1 1.9]
[5.9 2.3]
[5.7 2.5]
[5.2 2.3]
[5. 1.9]
[5.2 2. ]
[5.4 2.3]
[5.1 1.8]]
data_mic:
[[1.4 0.2]
[1.4 0.2]
[1.3 0.2]
[1.5 0.2]
[1.4 0.2]
[1.7 0.4]
[1.4 0.3]
[1.5 0.2]
[1.4 0.2]
[1.5 0.1]
[1.5 0.2]
[1.6 0.2]
[1.4 0.1]
[1.1 0.1]
[1.2 0.2]
[1.5 0.4]
[1.3 0.4]
[1.4 0.3]
[1.7 0.3]
[1.5 0.3]
[1.7 0.2]
[1.5 0.4]
[1. 0.2]
[1.7 0.5]
[1.9 0.2]
[1.6 0.2]
[1.6 0.4]
[1.5 0.2]
[1.4 0.2]
[1.6 0.2]
[1.6 0.2]
[1.5 0.4]
[1.5 0.1]
[1.4 0.2]
[1.5 0.2]
[1.2 0.2]
[1.3 0.2]
[1.4 0.1]
[1.3 0.2]
[1.5 0.2]
[1.3 0.3]
[1.3 0.3]
[1.3 0.2]
[1.6 0.6]
[1.9 0.4]
[1.4 0.3]
[1.6 0.2]
[1.4 0.2]
[1.5 0.2]
[1.4 0.2]
[4.7 1.4]
[4.5 1.5]
[4.9 1.5]
[4. 1.3]
[4.6 1.5]
[4.5 1.3]
[4.7 1.6]
[3.3 1. ]
[4.6 1.3]
[3.9 1.4]
[3.5 1. ]
[4.2 1.5]
[4. 1. ]
[4.7 1.4]
[3.6 1.3]
[4.4 1.4]
[4.5 1.5]
[4.1 1. ]
[4.5 1.5]
[3.9 1.1]
[4.8 1.8]
[4. 1.3]
[4.9 1.5]
[4.7 1.2]
[4.3 1.3]
[4.4 1.4]
[4.8 1.4]
[5. 1.7]
[4.5 1.5]
[3.5 1. ]
[3.8 1.1]
[3.7 1. ]
[3.9 1.2]
[5.1 1.6]
[4.5 1.5]
[4.5 1.6]
[4.7 1.5]
[4.4 1.3]
[4.1 1.3]
[4. 1.3]
[4.4 1.2]
[4.6 1.4]
[4. 1.2]
[3.3 1. ]
[4.2 1.3]
[4.2 1.2]
[4.2 1.3]
[4.3 1.3]
[3. 1.1]
[4.1 1.3]
[6. 2.5]
[5.1 1.9]
[5.9 2.1]
[5.6 1.8]
[5.8 2.2]
[6.6 2.1]
[4.5 1.7]
[6.3 1.8]
[5.8 1.8]
[6.1 2.5]
[5.1 2. ]
[5.3 1.9]
[5.5 2.1]
[5. 2. ]
[5.1 2.4]
[5.3 2.3]
[5.5 1.8]
[6.7 2.2]
[6.9 2.3]
[5. 1.5]
[5.7 2.3]
[4.9 2. ]
[6.7 2. ]
[4.9 1.8]
[5.7 2.1]
[6. 1.8]
[4.8 1.8]
[4.9 1.8]
[5.6 2.1]
[5.8 1.6]
[6.1 1.9]
[6.4 2. ]
[5.6 2.2]
[5.1 1.5]
[5.6 1.4]
[6.1 2.3]
[5.6 2.4]
[5.5 1.8]
[4.8 1.8]
[5.4 2.1]
[5.6 2.4]
[5.1 2.3]
[5.1 1.9]
[5.9 2.3]
[5.7 2.5]
[5.2 2.3]
[5. 1.9]
[5.2 2. ]
[5.4 2.3]
[5.1 1.8]]

Process finished with exit code 0

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值