自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 深度学习学习笔记(四)

我们通常使用pandas预处理原始数据,pandas可以与张量兼容。要使用数据,首先需要读取数据集,这一步操作可以读取csv文件并打印出来,直观的展示数据集比如:但是有个问题不能忽略,我们拿到的数据集可能有缺失。

2025-05-06 23:07:26 196

原创 深度学习学习笔记(三)

函数是 PyTorch 中的一个函数,用于计算输入张量x中每个元素的指数函数 (e^x)。换句话说,它返回一个新张量,其中每个元素是输入张量对应元素的指数函数值。如果x是一个张量,的输出将是一个与输入张量x具有相同形状的张量,其中每个元素是x中对应元素的指数函数值。例如,如果x是,则的输出将是,其中e是自然对数的底数,约等于2.71828。这个函数在深度学习中经常用于处理概率分布或激活函数等情况。连结通过torch.cat函数,能够按照指定维度对张量进行拼接,进而得到新的张量。有时,我们想通过。

2025-04-28 22:39:47 536

原创 深度学习学习记录(二)

随机生成形状为(3,4)的张量,其中的每个元素都从均值为0、标准差为1的标准高斯分布(正态分布)中随机采样。我们还可以提供赋予确定值的张量(嵌套列表),注意最外层的列表对应于轴0,内层的列表对应于轴1。这里的-1使reshape函数自动计算,可以取代x.reshape(3,4)可以用numel()函数知道张量中元素的总数,也是所有轴元素的乘积。怎么把该x由行向量(12,)转化为形状为(3,4)的矩阵?可以用张量的shape属性来访问张量的沿着每个轴的形状。比如形状为(2,3,4)的张量,所有元素为零。

2025-04-26 00:21:08 447

原创 深度学习学习记录(一)

这里的唤醒词是任意的自然语言,所以我们需要一个足够丰富的“模型族”,理想情况下,同一个模型族应该适合于“Alexa”识别和“Hey Siri”识别,因为从直觉上看,它们似乎是相似的任务。这是因为在一定程度上,许多重要的任务可以清晰地描述为,在给定一组特定的可用数据的情况下,估计未知事物的概率。(Learning)是一个训练模型的过程,通过这个过程,就可以发现正确的”参数集”,使模型强制执行所需要的行为。这也是“序列到序列”的学习问题,输出比输入短的多,数千个输入样本可能对应一个字。

2025-04-25 14:23:09 1381

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除