DSSM深度语义匹配模型

DSSM

DSSM的结构

DSSM 最大的卖点在检索场景下 使用点击数据来训练语义层次的匹配,简单的来说,传统检索场景下的匹配主要有:

  1. 字面匹配: TFIDF 、 BM25 
  2. 使用 LSA 类模型进行语义匹配,但是效果不好

而DSSM训练出来之后,检索场景下用户输入query之后,可以根据该query计算各个doc的语义相似度。

这里上图最直接:

上面是 DSSM 训练的架构图:

  1. 输入的是一个 query 和这个query相关的 doc ,这里的输入特征可以是最简单的 one-hot ,而需要 train 的是这个query下各个doc的相关性( DSSM里面使用点击率来代替相关性)
  2. 由于这种 one-hot 的输入可能会有两个问题:

    1. 导致 vocabulary 太大
    2. 会出现 oov 的问题

      因此输入特征之后的第一层是做一个叫做 Word Hashinging 的操作

  3. 接下来就是传统的神经网络了 
    $$l_i=f(W_il_{i-1}+b_i),i = 2,…,N-1 \\ 
    y=f(W_Nl_{N-1}+b_N) $$

    这里的 是激活函数,文中使用$tanh$来计算:$f(x)=\frac{1-e^{-2x}}{1+e^{-2x}}$

  4. 得到的$y$就是语义特征了,query和doc之间的相关性就可以直接使用特想之间的相似性来度量,这里使用cosine来计算 
    $$R(Q,D)=cosine(y_Q,y_D) = \frac{y_Q^Ty_D}{||y_Q||||y_D||}$$
  5. 最终得到的相似度就可以去训练query和doc的相关性了

因此整个结构就可以看做做了一层 Word Hashing 之后去训练 DNN 网络

Word Hashing

Word Hashing 是paper非常重要的一个 trick ,以英文单词来说,比如 good ,他可以写成 #good# ,然后按tri-grams来进行分解为 #go goo ood od# ,再将这个tri-grams灌入到 bag-of-word 中,这种方式可以非常有效的解决 vocabulary 太大的问题(因为在真实的web search中vocabulary就是异常的大),另外也不会出现 oov 问题,因此英文单词才26个,3个字母的组合都是有限的,很容易枚举光。 
那么问题就来了,这样两个不同的单词会不会产出相同的tri-grams,paper里面做了统计,说了这个冲突的概率非常的低,500K个word可以降到30k维,冲突的概率为0.0044%

但是在中文场景下,这个 Word Hashing 估计没有这么有效了 
因为直接使用了word hashing,因为无法记录上下文信息

训练DSSM

上面是前向计算过程,在进行训练的时候需要计算给定 Query 下与 Doc 的相关性: 
$$P(D|Q) = \frac{exp(\gamma R(Q,D))}{\sum_{d_i \in D} exp(\gamma R(Q,D))}$$

最终他需要优化的损失函数为: 
$$L(\Lambda) = - \text{log} \prod_{(Q,D^+)} P(D^+|Q)$$

$D^+$表示被点击的文档,这里就是最大化点击文档的相关性的最大似然

CDSSM

CDSSM (又称 CLSM :Convolutional latent semantic model)在一定程度上他可以弥补 DSSM 会丢失上下文的问题,他的结构也很简单,主要是将 DNN 替换成了 CNN


他的前向步骤主要计算如下: 
1. 使用指定滑窗大小对输入序列取窗口数据(称为 word-n-gram ) 
2. 对于这些 word-n-gram 按 letter-trigram 进行转换构成representation vector(其实就是 Word Hashing 
3. 对窗口数据进行一次卷积层的处理(窗口里面含有部分上下文) 
4. 使用 max-pooling 层来取那些比较重要的 word-n-gram 
5. 再过一次FC层计算语义向量 
6. 他最终输出的还是128维 

> 因为使用 CDSSM 来做语义匹配的工作也是比较合适的 

## DSSM-LSTM 
既然是为了记录输入句子的上下文,这个无疑是 Lstm 这个模型更为擅长,因此又有了一种 Lstm 来构造的 DSSM 模型 

这篇相对于 CDSMM 来说改的更为简单,其实就是将原始 DSSM 的模型替换为了 LSTM 模型…

MV-DSSM

MV-DSSM 里面的 MV 为 Multi-View ,一般可以理解为多视角的 DSSM ,在原始的DSSM中需要训练的有 Query 和 Doc 这两类的embedding,同时里面DNN 的所有权重都是共享的,而 MV-DSSM 他可以训练不止两类的训练数据,同时里面的深度模型的参数是相互独立:

 


基于 Multi-View 的 DSSM 是的参数变多了,由于多视角的训练,输入的语料也可以变得不同,自由度也更大了,但是随之带来的问题就是训练会变得越来越困难^_^

 

总结

DSSM 类的模型其实在计算相似度的时候最后一步除了使用Cosine,可能再接入一个MLP会更加好,因为Cosine是完全无参的。

DSSM 的优势:

  1. DSSM 看起来在真实检索场景下可行性很高,一方面是直接使用了用户天然的点击数据,出来的结果可行度很高,另一方面文中的doc可以使用title来表示,同时这个部分都是可以离线进行语义向量计算的,然后最终query和doc的语义相似性也是相当诱人
  2. DSSM 出的结果不仅可以直接排序,还可以拿中间见过做文章: semantic feature 可以天然的作为 word embedding 

DSSM 的劣势:

  1. 用户信息较难加入(不过可以基于 MVDSSM 改造)
  2. 貌似训练时间很长啊

参考

    1. Huang P S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough data[C]// ACM International Conference on Conference on Information & Knowledge Management. ACM, 2013:2333-2338.
    2. Shen, Yelong, et al. “A latent semantic model with convolutional-pooling structure for information retrieval.” Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. ACM, 2014.
    3. Palangi, Hamid, et al. “Semantic modelling with long-short-term memory for information retrieval.” arXiv preprint arXiv:1412.6629 (2014).
    4. Elkahky, Ali Mamdouh, Yang Song, and Xiaodong He. “A multi-view deep learning approach for cross domain user modeling in recommendation systems.” Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2015.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值