威佐夫博弈

做了几道威佐夫博弈的题,不很难理解,总结一下,方便以后复习  ps:部分内容来自互联网

从题入手来了解威佐夫博弈:

(很水)H—1527—取石子游戏

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3766 Accepted Submission(s): 1897


Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。


Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。


Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。


Sample Input
2 1
8 4
4 7


Sample Output
0
1

0

对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,n(k)=m(k)+k。一个必败点有如下性质:

1.所有自然数都会且仅会出现在一个必败点中

证明:m(k)是前面没有出现过的最小自然数,自然与前k-1个必败点中的数字都不同;m(k)>m(k-1),否则违背m(k-1)的选择原则;n(k)=m(k)+k>m(k-1)+(k-1)=n(k-1)>m(k-1),因此n(k)比以往出现的任何数都大,即也没有出现过。又由于m(k)的选择原则,所有自然数都会出现在某个必败点中。性质1证毕。

2.规则允许的任意操作可将必败点移动到必胜点

证明:以必败点(m(k),n(k))为例。若只改变两个数中的一个,由于性质1,则得到的点一定是必胜点;若同时增加两个数,由于不能改变两数之差,又有n(k)-m(k)=k,故得到的点也一定是必胜点。性质2证毕。

3.一定存在规则允许的某种操作可将必胜点移动到必败点

证明:以某个必胜点(i,j)为例。因为所有自然数都会出现在某个必败点中,故要么i等于m(k),要么j等于n(k)。若i=m(k),j>n(k),可从j中取走j-n(k)个石子到达必败点;若i=m(k),j<n(k),可从两堆同时拿走m(k)-m(j-m(k)),从而到达必败点(m(j-m(k)),m(j-m(k))+j-m(k));若i>m(k),j=n(k),可从i中取走i-m(k)个石子到达必败点;若i<m(k),j=n(k),需要再分两种情况,因为i一定也出现在某个必败点中,若i=m(l),则从j中拿走j-n(l),若i=n(l),则从j中拿走j-m(l),从而到达必败点(m(l),n(l))。性质3证毕。

判断一个点是不是必败点的公式与黄金分割有关,为:

m(k) = k * (1 + sqrt(5))/2

n(k) = m(k) + k

 上面这个有些空洞,而且第三点太抽象,不太好理解,对于本题,只要t=(int)i*(sqrt(5)+1)/2.0;,判断t和m的关系就可以了,这是简单题,不能完全代表威佐夫博弈,下面的第二道题会用到第三点,结合代码,更容易理解

代码:

#include<stdio.h>
#include<math.h>
int main()
{
	int n,m,i,j,k;
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		if(n<m)
		{
			n^=m;
			m^=n;    //  不使用变量的值交换运算(每一二进制位都变为相反,所以二者值变为相反) 
			n^=m;
		}
		i=n-m;
		n=(int)i*(sqrt(5)+1)/2.0;    // 黄金分割公式哎
		if(n==m)
		{
			printf("0\n");
		}
		else printf("1\n");
	}
	return 0;
}

下面再看一道题,是上面那道题的变形加升华:

H—2177—取(2堆)石子游戏
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1169 Accepted Submission(s): 701


Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。如果你胜,你第1次怎样取子?



Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,且a<=b。a=b=0退出。



Output
输出也有若干行,如果最后你是败者,则为0,反之,输出1,并输出使你胜的你第1次取石子后剩下的两堆石子的数量x,y,x<=y。如果在任意的一堆中取走石子能胜同时在两堆中同时取走相同数量的石子也能胜,先输出取走相同数量的石子的情况.



Sample Input
1 2
5 8
4 7
2 2
0 0


Sample Output
0
1
4 7
3 5
0
1
0 0
1 2

这道题不仅让判断输赢,还让走出第一步,重点是第一步到达奇异状态

#include<stdio.h>
#include<algorithm>
using namespace std;
#include<math.h>
void swap(int n,int m)
{
		n^=m;
		m^=n;
		n^=m;
}
int main()
{
	int a,b,i,j,k,t,t1,t2;
	while(scanf("%d%d",&a,&b),a+b)
	{
		if(a>b)
		  swap(a,b);
		t=(int)((b-a)*(1+sqrt(5.0))/2.0);
		if(a==t)         //   奇异状态 
	       printf("0\n");
	    else 
	    {
	    	printf("1\n");
	    //	if(abs(t-a)==abs(t+b-a-b));     
	    	   printf("%d %d\n",t,t+b-a);   //取走相同数目的石子,到达m(b-a)状态 
			if(!a)
			   printf("0 0\n");     //  只有一堆 
			for(i=0;i<=b;i++)
			{
				t=(int)i*(1.0+sqrt(5.0))/2.0;
				t1=t+i;
				if(t==a||t1==a||t1==b)    //最初a比b小,t比t1小吗,所以唯独没有t==b这种情况不能赢 
				   printf("%d %d\n",t,t1);
			}   
	    }
	}
	return 0;
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值