1174 区间中最大的数(基于线段树的RMQ)

1174 区间中最大的数

给出一个有N个数的序列,编号0 - N - 1。进行Q次查询,查询编号i至j的所有数中,最大的数是多少。

例如: 1 7 6 3 1。i = 1, j = 3,对应的数为7 6 3,最大的数为7。(该问题也被称为RMQ问题)

收起

输入

第1行:1个数N,表示序列的长度。(2 <= N <= 10000)
第2 - N + 1行:每行1个数,对应序列中的元素。(0 <= S[i] <= 10^9)
第N + 2行:1个数Q,表示查询的数量。(2 <= Q <= 10000)
第N + 3 - N + Q + 2行:每行2个数,对应查询的起始编号i和结束编号j。(0 <= i <= j <= N - 1)

输出

共Q行,对应每一个查询区间的最大值。

输入样例

5
1
7
6
3
1
3
0 1
1 3
3 4

输出样例

7
7
3

题目传送 嗖~~~

 

题意说明:基于线段树的RMQ模板题,具体来套一下,并用一下模板

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn = 1<<17;

int t, q, num, n, a, b, dat[maxn * 2 - 1];

int max(int a, int b)
{
    if(a > b)
        return a;
    else
        return b;
}
void init(int n_)
{
    n = 1;
    while(n < n_)
        n *= 2; // 防止给定的元素个数过少不是一棵满二叉树, 把他构造成2的幂得到一棵满二叉树

    for(int i = 0; i < 2 * n - 1; i++) // 所有点均赋初值, 因为本题为判断最大值,所以初始为-1.
        dat[i] = -1;
}

void update(int k, int a)
{
    k += n - 1; // k为元素编号,从0开始因而加上n - 1为 该元素在树中的编号
    dat[k] = a; 

    while(k > 0)
    {
        //从下向上回溯
        k = (k - 1) / 2; // 0开始结点编号,得到父节点编号
        dat[k] = max(dat[k * 2 + 1], dat[k * 2 + 2]); // 从0开始的节点编号,因而得到其左右儿子的编号。
    }

}

int query(int a, int b, int k, int l, int r)
{
    if(r <= a || b <= l)
        return -1; // 不在区间内

    if(a <= l && r <= b)
        return dat[k];
    else
    {
        int v1 = query(a, b, k * 2 + 1, l, (l + r) / 2);
        int v2 = query(a, b, k * 2 + 2, (l + r) / 2, r);
        return max(v1, v2);
    }
}

int main()
{
    scanf("%d", &num);
    init(num);

    for(int i = 0; i < num; i++)
    {
        scanf("%d", &t);
        update(i,t); // 不断更新
    }
    scanf("%d", &q);
    
    while(q--)
    {
        scanf("%d%d", &a, &b);
        cout<< query(a, b + 1, 0, 0, n)<<endl;// 左闭右开
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值