1174 区间中最大的数
给出一个有N个数的序列,编号0 - N - 1。进行Q次查询,查询编号i至j的所有数中,最大的数是多少。
例如: 1 7 6 3 1。i = 1, j = 3,对应的数为7 6 3,最大的数为7。(该问题也被称为RMQ问题)
收起
输入
第1行:1个数N,表示序列的长度。(2 <= N <= 10000) 第2 - N + 1行:每行1个数,对应序列中的元素。(0 <= S[i] <= 10^9) 第N + 2行:1个数Q,表示查询的数量。(2 <= Q <= 10000) 第N + 3 - N + Q + 2行:每行2个数,对应查询的起始编号i和结束编号j。(0 <= i <= j <= N - 1)
输出
共Q行,对应每一个查询区间的最大值。
输入样例
5 1 7 6 3 1 3 0 1 1 3 3 4
输出样例
7 7 3
题目传送 嗖~~~
题意说明:基于线段树的RMQ模板题,具体来套一下,并用一下模板
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn = 1<<17;
int t, q, num, n, a, b, dat[maxn * 2 - 1];
int max(int a, int b)
{
if(a > b)
return a;
else
return b;
}
void init(int n_)
{
n = 1;
while(n < n_)
n *= 2; // 防止给定的元素个数过少不是一棵满二叉树, 把他构造成2的幂得到一棵满二叉树
for(int i = 0; i < 2 * n - 1; i++) // 所有点均赋初值, 因为本题为判断最大值,所以初始为-1.
dat[i] = -1;
}
void update(int k, int a)
{
k += n - 1; // k为元素编号,从0开始因而加上n - 1为 该元素在树中的编号
dat[k] = a;
while(k > 0)
{
//从下向上回溯
k = (k - 1) / 2; // 0开始结点编号,得到父节点编号
dat[k] = max(dat[k * 2 + 1], dat[k * 2 + 2]); // 从0开始的节点编号,因而得到其左右儿子的编号。
}
}
int query(int a, int b, int k, int l, int r)
{
if(r <= a || b <= l)
return -1; // 不在区间内
if(a <= l && r <= b)
return dat[k];
else
{
int v1 = query(a, b, k * 2 + 1, l, (l + r) / 2);
int v2 = query(a, b, k * 2 + 2, (l + r) / 2, r);
return max(v1, v2);
}
}
int main()
{
scanf("%d", &num);
init(num);
for(int i = 0; i < num; i++)
{
scanf("%d", &t);
update(i,t); // 不断更新
}
scanf("%d", &q);
while(q--)
{
scanf("%d%d", &a, &b);
cout<< query(a, b + 1, 0, 0, n)<<endl;// 左闭右开
}
return 0;
}