AI
文章平均质量分 75
FightingITPanda
don't talk,show me the code
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Spring AI 搭建 RAG 个人知识库
本文介绍了RAG(检索增强生成)技术如何解决AI大模型的三大痛点:幻觉率高、数据延迟和缺乏内部数据。RAG通过外挂向量库知识库,先检索相关文档再生成回答,提高准确性。实战部分演示了使用SpringAI配置向量模型和创建简易向量库的步骤,包括初始化知识库、整合到ChatClient和实际应用。文章最后指出RAG技术的核心在于向量化存储和检索机制,为后续深入学习向量数据库原理奠定了基础。(149字)原创 2025-10-30 09:31:57 · 1247 阅读 · 0 评论 -
springAI实现ai大模型+传统应用双剑合璧- Function Calling
摘要: Spring AI 提供了一种将大模型与本地项目结合的方案,通过定义工具类(Tool)并利用 Function Calling 机制实现。开发者只需继承 FunctionTool,使用 @Tool 和 @ToolParam 注解标记方法与参数,并通过 ChatClient 将会话请求传递给大模型。示例展示了如何调用本地工具(如查询食物、音乐等),并整合大模型的推理能力优化输出。注意:阿里云百炼大模型暂不支持流式输出,需适配返回字符串格式。原创 2025-10-27 21:53:19 · 387 阅读 · 0 评论 -
springAI +openAI 接入阿里云百炼大模型-通义千问
摘要:本文介绍了如何通过Spring AI快速接入阿里百炼大模型平台。相比本地部署模型响应慢的问题,使用阿里云大模型服务能获得更流畅的体验。主要内容包括:1)申请API Key;2)添加OpenAI规范的Spring Boot Starter依赖;3)配置YAML文件(需替换API Key并指定模型为qwen-max-latest);4)创建ChatClient调用模型。通过简单的配置修改即可实现从本地模型到云服务的切换,且无需改动Controller代码即可获得更优质的对话体验。文中还预告了后续将介绍如何原创 2025-10-27 21:00:55 · 534 阅读 · 3 评论 -
SpringAI + DeepSeek本地大模型应用开发-聊天机器人
摘要 本文介绍了使用Spring AI与本地部署的DeepSeek R1模型构建AI对话系统的实践方法。通过三步实现:1) 引入Spring AI相关依赖;2) 配置Ollama连接参数;3) 开发应用接口。文章详细说明了Java 17环境配置、模型参数设置、流式输出接口开发,并提供了模仿DeepSeek界面的HTML聊天窗口源码。最终实现了本地运行的AI对话功能,模型响应效果截图展示了实际运行效果。原创 2025-10-24 18:55:19 · 488 阅读 · 0 评论 -
DeepSeek-R1 本地部署 - 十分钟搞定
摘要: 本地部署DeepSeek-R1大模型只需3步: 安装Ollama:从官网下载工具,支持自定义安装路径(需通过命令行参数指定)。 下载DeepSeek-R1模型:在Ollama的Models页面选择1.5b版本,通过命令行ollama run deepseek-r1:1.5b下载。 配置ChatBox:安装图形界面工具,关联Ollama后即可调用模型对话。 贴士:通过环境变量OLLAMA_MODELS可修改模型存储路径,避免占用C盘空间。整个过程简单高效,适合本地体验大模型。(字数:149)原创 2025-09-13 20:22:35 · 817 阅读 · 0 评论
分享