CCCC L1 006. 连续因子

一个正整数N的因子中可能存在若干连续的数字。例如630可以分解为3*5*6*7,其中5、6、7就是3个连续的数字。给定任一正整数N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。

输入格式:

输入在一行中给出一个正整数N (1< N< 2 31 )。

输出格式:

首先在第1行输出最长连续因子的个数;然后在第2行中按“因子1*因子2*……*因子k”的格式输出最小的连续因子序列,其中因子按递增顺序输出,1不算在内。

Input
630
Output
3
5*6*7

求连续因子的方法:求各个因子为起点的最长序列,取最长的就是答案。
需要注意的是:

  • 正确性:保证最长序列乘起来也是n的因子;
  • 完备性:遍历所有因子是有必要的,比如2*3*4不是满足序列,但3*4*5有可能满足;
  • 高效性:从 n+1 开始,就不会再出现相邻的因子了。
#include<stdio.h>
unsigned long ansn, l = 0, r = 0;//保存答案
void sol(unsigned long n) {
    unsigned long pro = 1, tl = 0, tr = 0, maxl = 0;
    //遍历1 ~ 1+√n即可
    for (int t = 2; (t - 1)*(t - 1) <= n; ++t)
    {
        //以因子为起点寻找序列
        if (n%t == 0) {
            tl = t; pro = 1;
            for (unsigned long i = t; (i - 1)*(i - 1) <= n; ++i) {
                pro *= i;
                if (n%pro == 0)
                    tr = i;//继续寻找
                else break;//序列结束
            }
            if ( maxl < tr - tl + 1) {//保留最大的序列
                l = tl;
                r = tr;
                maxl = tr - tl + 1;
            }
        }
    }

    if (l == 0 || r == 0) {//没有找到解,说明1 ~ 1+√n 没有因子,是素数
        ansn = 1; l = r = n; return;
    }
    else ansn= r - l + 1;
}
int main() {
    unsigned long int n;
    while (~scanf("%u", &n))
    {
        l = r = 0;
        sol(n);
        printf("%u\n",ansn);
        for (int i = l; i <= r; ++i) {
            printf("%u%c", i, (i == r ? '\n' : '*'));
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值