一个正整数N的因子中可能存在若干连续的数字。例如630可以分解为3*5*6*7,其中5、6、7就是3个连续的数字。给定任一正整数N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。
输入格式:
输入在一行中给出一个正整数N (1< N< 2 31 )。
输出格式:
首先在第1行输出最长连续因子的个数;然后在第2行中按“因子1*因子2*……*因子k”的格式输出最小的连续因子序列,其中因子按递增顺序输出,1不算在内。
Input |
---|
630 |
Output |
3 5*6*7 |
求连续因子的方法:求各个因子为起点的最长序列,取最长的就是答案。
需要注意的是:
- 正确性:保证最长序列乘起来也是n的因子;
- 完备性:遍历所有因子是有必要的,比如2*3*4不是满足序列,但3*4*5有可能满足;
- 高效性:从 n√+1 开始,就不会再出现相邻的因子了。
#include<stdio.h>
unsigned long ansn, l = 0, r = 0;//保存答案
void sol(unsigned long n) {
unsigned long pro = 1, tl = 0, tr = 0, maxl = 0;
//遍历1 ~ 1+√n即可
for (int t = 2; (t - 1)*(t - 1) <= n; ++t)
{
//以因子为起点寻找序列
if (n%t == 0) {
tl = t; pro = 1;
for (unsigned long i = t; (i - 1)*(i - 1) <= n; ++i) {
pro *= i;
if (n%pro == 0)
tr = i;//继续寻找
else break;//序列结束
}
if ( maxl < tr - tl + 1) {//保留最大的序列
l = tl;
r = tr;
maxl = tr - tl + 1;
}
}
}
if (l == 0 || r == 0) {//没有找到解,说明1 ~ 1+√n 没有因子,是素数
ansn = 1; l = r = n; return;
}
else ansn= r - l + 1;
}
int main() {
unsigned long int n;
while (~scanf("%u", &n))
{
l = r = 0;
sol(n);
printf("%u\n",ansn);
for (int i = l; i <= r; ++i) {
printf("%u%c", i, (i == r ? '\n' : '*'));
}
}
}